MakeItFrom.com
Menu (ESC)

AWS E33-31 vs. ASTM A182 Grade F5

Both AWS E33-31 and ASTM A182 grade F5 are iron alloys. They have a modest 36% of their average alloy composition in common, which, by itself, doesn't mean much. There are 21 material properties with values for both materials. Properties with values for just one material (12, in this case) are not shown.

For each property being compared, the top bar is AWS E33-31 and the bottom bar is ASTM A182 grade F5.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
190
Elongation at Break, % 29
22
Poisson's Ratio 0.27
0.29
Shear Modulus, GPa 81
74
Tensile Strength: Ultimate (UTS), MPa 810
540

Thermal Properties

Latent Heat of Fusion, J/g 320
260
Melting Completion (Liquidus), °C 1380
1460
Melting Onset (Solidus), °C 1330
1420
Specific Heat Capacity, J/kg-K 480
470
Thermal Expansion, µm/m-K 14
13

Otherwise Unclassified Properties

Base Metal Price, % relative 36
4.5
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 6.0
1.8
Embodied Energy, MJ/kg 86
24
Embodied Water, L/kg 260
69

Common Calculations

PREN (Pitting Resistance) 44
6.8
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 28
19
Strength to Weight: Bending, points 24
19
Thermal Shock Resistance, points 19
15

Alloy Composition

Carbon (C), % 0 to 0.030
0 to 0.15
Chromium (Cr), % 31 to 35
4.0 to 6.0
Copper (Cu), % 0.4 to 0.8
0
Iron (Fe), % 24.7 to 34.8
91.5 to 95.3
Manganese (Mn), % 2.5 to 4.0
0.3 to 0.6
Molybdenum (Mo), % 1.0 to 2.0
0.44 to 0.65
Nickel (Ni), % 30 to 32
0 to 0.5
Nitrogen (N), % 0.3 to 0.5
0
Phosphorus (P), % 0 to 0.020
0 to 0.030
Silicon (Si), % 0 to 0.9
0 to 0.5
Sulfur (S), % 0 to 0.010
0 to 0.030