MakeItFrom.com
Menu (ESC)

AWS E33-31 vs. AWS BNi-6

AWS E33-31 belongs to the iron alloys classification, while AWS BNi-6 belongs to the nickel alloys. They have a modest 31% of their average alloy composition in common, which, by itself, doesn't mean much. There are 19 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is AWS E33-31 and the bottom bar is AWS BNi-6.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
160
Poisson's Ratio 0.27
0.31
Shear Modulus, GPa 81
62
Tensile Strength: Ultimate (UTS), MPa 810
450

Thermal Properties

Latent Heat of Fusion, J/g 320
260
Melting Completion (Liquidus), °C 1380
880
Melting Onset (Solidus), °C 1330
880
Specific Heat Capacity, J/kg-K 480
480
Thermal Expansion, µm/m-K 14
9.8

Otherwise Unclassified Properties

Base Metal Price, % relative 36
55
Density, g/cm3 7.9
8.2
Embodied Carbon, kg CO2/kg material 6.0
9.4
Embodied Energy, MJ/kg 86
130
Embodied Water, L/kg 260
210

Common Calculations

Stiffness to Weight: Axial, points 14
11
Stiffness to Weight: Bending, points 25
22
Strength to Weight: Axial, points 28
15
Strength to Weight: Bending, points 24
16
Thermal Shock Resistance, points 19
20

Alloy Composition

Aluminum (Al), % 0
0 to 0.050
Carbon (C), % 0 to 0.030
0 to 0.060
Chromium (Cr), % 31 to 35
0
Cobalt (Co), % 0
0 to 0.1
Copper (Cu), % 0.4 to 0.8
0
Iron (Fe), % 24.7 to 34.8
0
Manganese (Mn), % 2.5 to 4.0
0
Molybdenum (Mo), % 1.0 to 2.0
0
Nickel (Ni), % 30 to 32
87.2 to 90
Nitrogen (N), % 0.3 to 0.5
0
Phosphorus (P), % 0 to 0.020
10 to 12
Selenium (Se), % 0
0 to 0.0050
Silicon (Si), % 0 to 0.9
0
Sulfur (S), % 0 to 0.010
0 to 0.020
Titanium (Ti), % 0
0 to 0.050
Zirconium (Zr), % 0
0 to 0.050
Residuals, % 0
0 to 0.5