MakeItFrom.com
Menu (ESC)

AWS E33-31 vs. EN 1.0258 Steel

Both AWS E33-31 and EN 1.0258 steel are iron alloys. They have a modest 31% of their average alloy composition in common, which, by itself, doesn't mean much. There are 20 material properties with values for both materials. Properties with values for just one material (13, in this case) are not shown.

For each property being compared, the top bar is AWS E33-31 and the bottom bar is EN 1.0258 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
190
Elongation at Break, % 29
23
Poisson's Ratio 0.27
0.29
Shear Modulus, GPa 81
73
Tensile Strength: Ultimate (UTS), MPa 810
490

Thermal Properties

Latent Heat of Fusion, J/g 320
250
Melting Completion (Liquidus), °C 1380
1460
Melting Onset (Solidus), °C 1330
1420
Specific Heat Capacity, J/kg-K 480
470
Thermal Expansion, µm/m-K 14
12

Otherwise Unclassified Properties

Base Metal Price, % relative 36
2.1
Density, g/cm3 7.9
7.9
Embodied Carbon, kg CO2/kg material 6.0
1.5
Embodied Energy, MJ/kg 86
19
Embodied Water, L/kg 260
47

Common Calculations

Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 28
17
Strength to Weight: Bending, points 24
18
Thermal Shock Resistance, points 19
16

Alloy Composition

Carbon (C), % 0 to 0.030
0 to 0.2
Chromium (Cr), % 31 to 35
0 to 0.3
Copper (Cu), % 0.4 to 0.8
0 to 0.3
Iron (Fe), % 24.7 to 34.8
96.9 to 100
Manganese (Mn), % 2.5 to 4.0
0 to 1.4
Molybdenum (Mo), % 1.0 to 2.0
0 to 0.080
Nickel (Ni), % 30 to 32
0 to 0.3
Niobium (Nb), % 0
0 to 0.010
Nitrogen (N), % 0.3 to 0.5
0
Phosphorus (P), % 0 to 0.020
0 to 0.025
Silicon (Si), % 0 to 0.9
0 to 0.4
Sulfur (S), % 0 to 0.010
0 to 0.020
Titanium (Ti), % 0
0 to 0.040
Vanadium (V), % 0
0 to 0.020