MakeItFrom.com
Menu (ESC)

AWS E33-31 vs. EN 1.6553 Steel

Both AWS E33-31 and EN 1.6553 steel are iron alloys. They have a modest 33% of their average alloy composition in common, which, by itself, doesn't mean much. There are 20 material properties with values for both materials. Properties with values for just one material (12, in this case) are not shown.

For each property being compared, the top bar is AWS E33-31 and the bottom bar is EN 1.6553 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
190
Elongation at Break, % 29
19 to 21
Poisson's Ratio 0.27
0.29
Shear Modulus, GPa 81
73
Tensile Strength: Ultimate (UTS), MPa 810
710 to 800

Thermal Properties

Latent Heat of Fusion, J/g 320
250
Melting Completion (Liquidus), °C 1380
1460
Melting Onset (Solidus), °C 1330
1420
Specific Heat Capacity, J/kg-K 480
470
Thermal Expansion, µm/m-K 14
13

Otherwise Unclassified Properties

Base Metal Price, % relative 36
2.7
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 6.0
1.6
Embodied Energy, MJ/kg 86
21
Embodied Water, L/kg 260
51

Common Calculations

Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 28
25 to 28
Strength to Weight: Bending, points 24
23 to 24
Thermal Shock Resistance, points 19
21 to 23

Alloy Composition

Carbon (C), % 0 to 0.030
0.23 to 0.28
Chromium (Cr), % 31 to 35
0.4 to 0.8
Copper (Cu), % 0.4 to 0.8
0 to 0.3
Iron (Fe), % 24.7 to 34.8
95.6 to 98.2
Manganese (Mn), % 2.5 to 4.0
0.6 to 1.0
Molybdenum (Mo), % 1.0 to 2.0
0.15 to 0.3
Nickel (Ni), % 30 to 32
0.4 to 0.8
Nitrogen (N), % 0.3 to 0.5
0
Phosphorus (P), % 0 to 0.020
0 to 0.030
Silicon (Si), % 0 to 0.9
0 to 0.8
Sulfur (S), % 0 to 0.010
0 to 0.025
Vanadium (V), % 0
0 to 0.030