MakeItFrom.com
Menu (ESC)

AWS E33-31 vs. SAE-AISI 1008 Steel

Both AWS E33-31 and SAE-AISI 1008 steel are iron alloys. They have a modest 30% of their average alloy composition in common, which, by itself, doesn't mean much. There are 20 material properties with values for both materials. Properties with values for just one material (13, in this case) are not shown.

For each property being compared, the top bar is AWS E33-31 and the bottom bar is SAE-AISI 1008 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
190
Elongation at Break, % 29
22 to 33
Poisson's Ratio 0.27
0.29
Shear Modulus, GPa 81
73
Tensile Strength: Ultimate (UTS), MPa 810
330 to 370

Thermal Properties

Latent Heat of Fusion, J/g 320
250
Melting Completion (Liquidus), °C 1380
1470
Melting Onset (Solidus), °C 1330
1430
Specific Heat Capacity, J/kg-K 480
470
Thermal Expansion, µm/m-K 14
12

Otherwise Unclassified Properties

Base Metal Price, % relative 36
1.8
Density, g/cm3 7.9
7.9
Embodied Carbon, kg CO2/kg material 6.0
1.4
Embodied Energy, MJ/kg 86
18
Embodied Water, L/kg 260
45

Common Calculations

Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 28
12 to 13
Strength to Weight: Bending, points 24
13 to 15
Thermal Shock Resistance, points 19
10 to 12

Alloy Composition

Carbon (C), % 0 to 0.030
0 to 0.1
Chromium (Cr), % 31 to 35
0
Copper (Cu), % 0.4 to 0.8
0
Iron (Fe), % 24.7 to 34.8
99.31 to 99.7
Manganese (Mn), % 2.5 to 4.0
0.3 to 0.5
Molybdenum (Mo), % 1.0 to 2.0
0
Nickel (Ni), % 30 to 32
0
Nitrogen (N), % 0.3 to 0.5
0
Phosphorus (P), % 0 to 0.020
0 to 0.040
Silicon (Si), % 0 to 0.9
0
Sulfur (S), % 0 to 0.010
0 to 0.050