MakeItFrom.com
Menu (ESC)

AWS E33-31 vs. C44500 Brass

AWS E33-31 belongs to the iron alloys classification, while C44500 brass belongs to the copper alloys. There are 19 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown.

For each property being compared, the top bar is AWS E33-31 and the bottom bar is C44500 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
110
Poisson's Ratio 0.27
0.32
Shear Modulus, GPa 81
41
Tensile Strength: Ultimate (UTS), MPa 810
350

Thermal Properties

Latent Heat of Fusion, J/g 320
180
Melting Completion (Liquidus), °C 1380
940
Melting Onset (Solidus), °C 1330
900
Specific Heat Capacity, J/kg-K 480
380
Thermal Expansion, µm/m-K 14
20

Otherwise Unclassified Properties

Base Metal Price, % relative 36
26
Density, g/cm3 7.9
8.3
Embodied Carbon, kg CO2/kg material 6.0
2.7
Embodied Energy, MJ/kg 86
46
Embodied Water, L/kg 260
330

Common Calculations

Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 28
12
Strength to Weight: Bending, points 24
13
Thermal Shock Resistance, points 19
12

Alloy Composition

Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 31 to 35
0
Copper (Cu), % 0.4 to 0.8
70 to 73
Iron (Fe), % 24.7 to 34.8
0 to 0.060
Lead (Pb), % 0
0 to 0.070
Manganese (Mn), % 2.5 to 4.0
0
Molybdenum (Mo), % 1.0 to 2.0
0
Nickel (Ni), % 30 to 32
0
Nitrogen (N), % 0.3 to 0.5
0
Phosphorus (P), % 0 to 0.020
0.020 to 0.1
Silicon (Si), % 0 to 0.9
0
Sulfur (S), % 0 to 0.010
0
Tin (Sn), % 0
0.9 to 1.2
Zinc (Zn), % 0
25.2 to 29.1
Residuals, % 0
0 to 0.4