MakeItFrom.com
Menu (ESC)

AWS E330 vs. 4145 Aluminum

AWS E330 belongs to the iron alloys classification, while 4145 aluminum belongs to the aluminum alloys. There are 24 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is AWS E330 and the bottom bar is 4145 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
73
Elongation at Break, % 29
2.2
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 76
28
Tensile Strength: Ultimate (UTS), MPa 580
120

Thermal Properties

Latent Heat of Fusion, J/g 300
540
Melting Completion (Liquidus), °C 1400
590
Melting Onset (Solidus), °C 1350
520
Specific Heat Capacity, J/kg-K 470
880
Thermal Conductivity, W/m-K 12
100
Thermal Expansion, µm/m-K 13
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
26
Electrical Conductivity: Equal Weight (Specific), % IACS 1.9
84

Otherwise Unclassified Properties

Base Metal Price, % relative 31
10
Density, g/cm3 8.1
2.8
Embodied Carbon, kg CO2/kg material 5.4
7.6
Embodied Energy, MJ/kg 75
140
Embodied Water, L/kg 180
1040

Common Calculations

Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
50
Strength to Weight: Axial, points 20
12
Strength to Weight: Bending, points 19
19
Thermal Diffusivity, mm2/s 3.2
42
Thermal Shock Resistance, points 16
5.5

Alloy Composition

Aluminum (Al), % 0
83 to 87.4
Carbon (C), % 0.18 to 0.25
0
Chromium (Cr), % 14 to 17
0 to 0.15
Copper (Cu), % 0 to 0.75
3.3 to 4.7
Iron (Fe), % 40.7 to 51.8
0 to 0.8
Magnesium (Mg), % 0
0 to 0.15
Manganese (Mn), % 1.0 to 2.5
0 to 0.15
Molybdenum (Mo), % 0 to 0.75
0
Nickel (Ni), % 33 to 37
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
9.3 to 10.7
Sulfur (S), % 0 to 0.030
0
Zinc (Zn), % 0
0 to 0.2
Residuals, % 0
0 to 0.15