MakeItFrom.com
Menu (ESC)

AWS E330 vs. EN 1.4587 Stainless Steel

Both AWS E330 and EN 1.4587 stainless steel are iron alloys. They have 84% of their average alloy composition in common. There are 25 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is AWS E330 and the bottom bar is EN 1.4587 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 29
34
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 76
80
Tensile Strength: Ultimate (UTS), MPa 580
540

Thermal Properties

Latent Heat of Fusion, J/g 300
310
Melting Completion (Liquidus), °C 1400
1420
Melting Onset (Solidus), °C 1350
1370
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 12
17
Thermal Expansion, µm/m-K 13
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
1.8
Electrical Conductivity: Equal Weight (Specific), % IACS 1.9
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 31
36
Density, g/cm3 8.1
8.1
Embodied Carbon, kg CO2/kg material 5.4
6.3
Embodied Energy, MJ/kg 75
87
Embodied Water, L/kg 180
230

Common Calculations

PREN (Pitting Resistance) 17
43
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 20
18
Strength to Weight: Bending, points 19
18
Thermal Diffusivity, mm2/s 3.2
4.5
Thermal Shock Resistance, points 16
13

Alloy Composition

Carbon (C), % 0.18 to 0.25
0 to 0.030
Chromium (Cr), % 14 to 17
24 to 26
Copper (Cu), % 0 to 0.75
2.0 to 3.0
Iron (Fe), % 40.7 to 51.8
32.7 to 41.9
Manganese (Mn), % 1.0 to 2.5
0 to 2.0
Molybdenum (Mo), % 0 to 0.75
4.0 to 5.0
Nickel (Ni), % 33 to 37
28 to 30
Nitrogen (N), % 0
0.15 to 0.25
Phosphorus (P), % 0 to 0.040
0 to 0.035
Silicon (Si), % 0 to 1.0
0 to 1.0
Sulfur (S), % 0 to 0.030
0 to 0.025