MakeItFrom.com
Menu (ESC)

AWS E330 vs. EN 1.4600 Stainless Steel

Both AWS E330 and EN 1.4600 stainless steel are iron alloys. They have 61% of their average alloy composition in common. There are 25 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is AWS E330 and the bottom bar is EN 1.4600 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 29
23
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 76
76
Tensile Strength: Ultimate (UTS), MPa 580
580

Thermal Properties

Latent Heat of Fusion, J/g 300
270
Melting Completion (Liquidus), °C 1400
1440
Melting Onset (Solidus), °C 1350
1400
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 12
27
Thermal Expansion, µm/m-K 13
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 1.9
3.4

Otherwise Unclassified Properties

Base Metal Price, % relative 31
7.0
Density, g/cm3 8.1
7.7
Embodied Carbon, kg CO2/kg material 5.4
2.0
Embodied Energy, MJ/kg 75
28
Embodied Water, L/kg 180
100

Common Calculations

PREN (Pitting Resistance) 17
12
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 20
21
Strength to Weight: Bending, points 19
20
Thermal Diffusivity, mm2/s 3.2
7.3
Thermal Shock Resistance, points 16
21

Alloy Composition

Carbon (C), % 0.18 to 0.25
0 to 0.030
Chromium (Cr), % 14 to 17
11 to 13
Copper (Cu), % 0 to 0.75
0
Iron (Fe), % 40.7 to 51.8
82 to 87.7
Manganese (Mn), % 1.0 to 2.5
1.0 to 2.5
Molybdenum (Mo), % 0 to 0.75
0
Nickel (Ni), % 33 to 37
0.3 to 1.0
Nitrogen (N), % 0
0 to 0.025
Phosphorus (P), % 0 to 0.040
0 to 0.040
Silicon (Si), % 0 to 1.0
0 to 1.0
Sulfur (S), % 0 to 0.030
0 to 0.015
Titanium (Ti), % 0
0 to 0.35