MakeItFrom.com
Menu (ESC)

AWS E330 vs. N10629 Nickel

AWS E330 belongs to the iron alloys classification, while N10629 nickel belongs to the nickel alloys. They have 41% of their average alloy composition in common. There are 20 material properties with values for both materials. Properties with values for just one material (12, in this case) are not shown.

For each property being compared, the top bar is AWS E330 and the bottom bar is N10629 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
220
Elongation at Break, % 29
45
Poisson's Ratio 0.29
0.31
Shear Modulus, GPa 76
83
Tensile Strength: Ultimate (UTS), MPa 580
860

Thermal Properties

Latent Heat of Fusion, J/g 300
310
Melting Completion (Liquidus), °C 1400
1610
Melting Onset (Solidus), °C 1350
1560
Specific Heat Capacity, J/kg-K 470
390
Thermal Expansion, µm/m-K 13
10

Otherwise Unclassified Properties

Base Metal Price, % relative 31
75
Density, g/cm3 8.1
9.2
Embodied Carbon, kg CO2/kg material 5.4
15
Embodied Energy, MJ/kg 75
190
Embodied Water, L/kg 180
270

Common Calculations

Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
22
Strength to Weight: Axial, points 20
26
Strength to Weight: Bending, points 19
22
Thermal Shock Resistance, points 16
27

Alloy Composition

Aluminum (Al), % 0
0.1 to 0.5
Carbon (C), % 0.18 to 0.25
0 to 0.010
Chromium (Cr), % 14 to 17
0.5 to 1.5
Cobalt (Co), % 0
0 to 2.5
Copper (Cu), % 0 to 0.75
0 to 0.5
Iron (Fe), % 40.7 to 51.8
1.0 to 6.0
Manganese (Mn), % 1.0 to 2.5
0 to 1.5
Molybdenum (Mo), % 0 to 0.75
26 to 30
Nickel (Ni), % 33 to 37
65 to 72.4
Phosphorus (P), % 0 to 0.040
0 to 0.040
Silicon (Si), % 0 to 1.0
0 to 0.050
Sulfur (S), % 0 to 0.030
0 to 0.010