MakeItFrom.com
Menu (ESC)

AWS E330 vs. S35315 Stainless Steel

Both AWS E330 and S35315 stainless steel are iron alloys. They have 89% of their average alloy composition in common. There are 25 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown.

For each property being compared, the top bar is AWS E330 and the bottom bar is S35315 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 29
46
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 76
78
Tensile Strength: Ultimate (UTS), MPa 580
740

Thermal Properties

Latent Heat of Fusion, J/g 300
330
Melting Completion (Liquidus), °C 1400
1370
Melting Onset (Solidus), °C 1350
1330
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 12
12
Thermal Expansion, µm/m-K 13
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 1.9
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 31
34
Density, g/cm3 8.1
7.9
Embodied Carbon, kg CO2/kg material 5.4
5.7
Embodied Energy, MJ/kg 75
81
Embodied Water, L/kg 180
220

Common Calculations

PREN (Pitting Resistance) 17
27
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 20
26
Strength to Weight: Bending, points 19
23
Thermal Diffusivity, mm2/s 3.2
3.1
Thermal Shock Resistance, points 16
17

Alloy Composition

Carbon (C), % 0.18 to 0.25
0.040 to 0.080
Cerium (Ce), % 0
0.030 to 0.1
Chromium (Cr), % 14 to 17
24 to 26
Copper (Cu), % 0 to 0.75
0
Iron (Fe), % 40.7 to 51.8
33.6 to 40.6
Manganese (Mn), % 1.0 to 2.5
0 to 2.0
Molybdenum (Mo), % 0 to 0.75
0
Nickel (Ni), % 33 to 37
34 to 36
Nitrogen (N), % 0
0.12 to 0.18
Phosphorus (P), % 0 to 0.040
0 to 0.040
Silicon (Si), % 0 to 1.0
1.2 to 2.0
Sulfur (S), % 0 to 0.030
0 to 0.030