MakeItFrom.com
Menu (ESC)

AWS E330H vs. EN 1.4877 Stainless Steel

Both AWS E330H and EN 1.4877 stainless steel are iron alloys. They have 88% of their average alloy composition in common. There are 25 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is AWS E330H and the bottom bar is EN 1.4877 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 11
36
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 76
79
Tensile Strength: Ultimate (UTS), MPa 690
630

Thermal Properties

Latent Heat of Fusion, J/g 290
310
Melting Completion (Liquidus), °C 1400
1400
Melting Onset (Solidus), °C 1350
1360
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 12
12
Thermal Expansion, µm/m-K 13
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
1.8
Electrical Conductivity: Equal Weight (Specific), % IACS 1.9
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 30
37
Density, g/cm3 8.1
8.0
Embodied Carbon, kg CO2/kg material 5.4
6.2
Embodied Energy, MJ/kg 76
89
Embodied Water, L/kg 180
220

Common Calculations

PREN (Pitting Resistance) 17
28
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 24
22
Strength to Weight: Bending, points 22
20
Thermal Diffusivity, mm2/s 3.2
3.2
Thermal Shock Resistance, points 19
15

Alloy Composition

Aluminum (Al), % 0
0 to 0.025
Carbon (C), % 0.35 to 0.45
0.040 to 0.080
Cerium (Ce), % 0
0.050 to 0.1
Chromium (Cr), % 14 to 17
26 to 28
Copper (Cu), % 0 to 0.75
0
Iron (Fe), % 40.5 to 51.7
36.4 to 42.3
Manganese (Mn), % 1.0 to 2.5
0 to 1.0
Molybdenum (Mo), % 0 to 0.75
0
Nickel (Ni), % 33 to 37
31 to 33
Niobium (Nb), % 0
0.6 to 1.0
Nitrogen (N), % 0
0 to 0.1
Phosphorus (P), % 0 to 0.040
0 to 0.020
Silicon (Si), % 0 to 1.0
0 to 0.3
Sulfur (S), % 0 to 0.030
0 to 0.010