MakeItFrom.com
Menu (ESC)

AWS E330H vs. EN 1.8893 Steel

Both AWS E330H and EN 1.8893 steel are iron alloys. They have 49% of their average alloy composition in common. There are 24 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown.

For each property being compared, the top bar is AWS E330H and the bottom bar is EN 1.8893 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 11
16
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 76
73
Tensile Strength: Ultimate (UTS), MPa 690
830

Thermal Properties

Latent Heat of Fusion, J/g 290
250
Melting Completion (Liquidus), °C 1400
1460
Melting Onset (Solidus), °C 1350
1420
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 12
40
Thermal Expansion, µm/m-K 13
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
7.5
Electrical Conductivity: Equal Weight (Specific), % IACS 1.9
8.5

Otherwise Unclassified Properties

Base Metal Price, % relative 30
2.9
Density, g/cm3 8.1
7.8
Embodied Carbon, kg CO2/kg material 5.4
1.7
Embodied Energy, MJ/kg 76
23
Embodied Water, L/kg 180
51

Common Calculations

Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 24
29
Strength to Weight: Bending, points 22
25
Thermal Diffusivity, mm2/s 3.2
11
Thermal Shock Resistance, points 19
24

Alloy Composition

Aluminum (Al), % 0
0.020 to 0.060
Carbon (C), % 0.35 to 0.45
0 to 0.2
Chromium (Cr), % 14 to 17
0 to 0.3
Copper (Cu), % 0 to 0.75
0 to 0.2
Iron (Fe), % 40.5 to 51.7
95.6 to 98
Manganese (Mn), % 1.0 to 2.5
1.4 to 1.7
Molybdenum (Mo), % 0 to 0.75
0.3 to 0.45
Nickel (Ni), % 33 to 37
0.3 to 0.7
Niobium (Nb), % 0
0 to 0.050
Nitrogen (N), % 0
0 to 0.020
Phosphorus (P), % 0 to 0.040
0 to 0.025
Silicon (Si), % 0 to 1.0
0 to 0.5
Sulfur (S), % 0 to 0.030
0 to 0.025
Titanium (Ti), % 0
0 to 0.050
Vanadium (V), % 0
0 to 0.12