MakeItFrom.com
Menu (ESC)

AWS E330H vs. C33200 Brass

AWS E330H belongs to the iron alloys classification, while C33200 brass belongs to the copper alloys. There are 24 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is AWS E330H and the bottom bar is C33200 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
100
Elongation at Break, % 11
7.0 to 60
Poisson's Ratio 0.29
0.31
Shear Modulus, GPa 76
40
Tensile Strength: Ultimate (UTS), MPa 690
320 to 520

Thermal Properties

Latent Heat of Fusion, J/g 290
170
Melting Completion (Liquidus), °C 1400
930
Melting Onset (Solidus), °C 1350
900
Specific Heat Capacity, J/kg-K 470
380
Thermal Conductivity, W/m-K 12
120
Thermal Expansion, µm/m-K 13
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
26
Electrical Conductivity: Equal Weight (Specific), % IACS 1.9
28

Otherwise Unclassified Properties

Base Metal Price, % relative 30
24
Density, g/cm3 8.1
8.2
Embodied Carbon, kg CO2/kg material 5.4
2.6
Embodied Energy, MJ/kg 76
44
Embodied Water, L/kg 180
320

Common Calculations

Stiffness to Weight: Axial, points 13
7.1
Stiffness to Weight: Bending, points 24
19
Strength to Weight: Axial, points 24
11 to 17
Strength to Weight: Bending, points 22
13 to 17
Thermal Diffusivity, mm2/s 3.2
37
Thermal Shock Resistance, points 19
11 to 17

Alloy Composition

Carbon (C), % 0.35 to 0.45
0
Chromium (Cr), % 14 to 17
0
Copper (Cu), % 0 to 0.75
65 to 68
Iron (Fe), % 40.5 to 51.7
0 to 0.070
Lead (Pb), % 0
1.5 to 2.5
Manganese (Mn), % 1.0 to 2.5
0
Molybdenum (Mo), % 0 to 0.75
0
Nickel (Ni), % 33 to 37
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.030
0
Zinc (Zn), % 0
29 to 33.5
Residuals, % 0
0 to 0.4