MakeItFrom.com
Menu (ESC)

AWS E349 vs. EN 1.4919 Stainless Steel

Both AWS E349 and EN 1.4919 stainless steel are iron alloys. They have a moderately high 94% of their average alloy composition in common. There are 25 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown.

For each property being compared, the top bar is AWS E349 and the bottom bar is EN 1.4919 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 29
40
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 78
78
Tensile Strength: Ultimate (UTS), MPa 770
590

Thermal Properties

Latent Heat of Fusion, J/g 290
290
Melting Completion (Liquidus), °C 1470
1440
Melting Onset (Solidus), °C 1420
1400
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 15
16
Thermal Expansion, µm/m-K 14
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.1
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 2.4
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 25
19
Density, g/cm3 7.9
7.9
Embodied Carbon, kg CO2/kg material 4.9
3.8
Embodied Energy, MJ/kg 72
52
Embodied Water, L/kg 150
150

Common Calculations

PREN (Pitting Resistance) 24
26
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 27
21
Strength to Weight: Bending, points 24
20
Thermal Diffusivity, mm2/s 4.1
4.3
Thermal Shock Resistance, points 20
13

Alloy Composition

Boron (B), % 0
0.0015 to 0.0050
Carbon (C), % 0 to 0.13
0.040 to 0.080
Chromium (Cr), % 18 to 21
16.5 to 18.5
Copper (Cu), % 0 to 0.75
0
Iron (Fe), % 60.5 to 71.1
62.8 to 71.5
Manganese (Mn), % 0.5 to 2.5
0 to 2.0
Molybdenum (Mo), % 0.35 to 0.65
2.0 to 2.5
Nickel (Ni), % 8.0 to 10
10 to 13
Niobium (Nb), % 0.75 to 1.2
0
Nitrogen (N), % 0
0 to 0.1
Phosphorus (P), % 0 to 0.040
0 to 0.035
Silicon (Si), % 0 to 1.0
0 to 1.0
Sulfur (S), % 0 to 0.030
0 to 0.015
Titanium (Ti), % 0 to 0.15
0
Tungsten (W), % 1.3 to 1.8
0
Vanadium (V), % 0.1 to 0.3
0