MakeItFrom.com
Menu (ESC)

AWS E349 vs. C36200 Brass

AWS E349 belongs to the iron alloys classification, while C36200 brass belongs to the copper alloys. There are 24 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is AWS E349 and the bottom bar is C36200 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
100
Elongation at Break, % 29
20 to 53
Poisson's Ratio 0.28
0.31
Shear Modulus, GPa 78
39
Tensile Strength: Ultimate (UTS), MPa 770
340 to 420

Thermal Properties

Latent Heat of Fusion, J/g 290
170
Melting Completion (Liquidus), °C 1470
900
Melting Onset (Solidus), °C 1420
890
Specific Heat Capacity, J/kg-K 470
380
Thermal Conductivity, W/m-K 15
120
Thermal Expansion, µm/m-K 14
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.1
26
Electrical Conductivity: Equal Weight (Specific), % IACS 2.4
28

Otherwise Unclassified Properties

Base Metal Price, % relative 25
23
Density, g/cm3 7.9
8.2
Embodied Carbon, kg CO2/kg material 4.9
2.6
Embodied Energy, MJ/kg 72
45
Embodied Water, L/kg 150
320

Common Calculations

Stiffness to Weight: Axial, points 14
6.9
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 27
11 to 14
Strength to Weight: Bending, points 24
13 to 15
Thermal Diffusivity, mm2/s 4.1
37
Thermal Shock Resistance, points 20
11 to 14

Alloy Composition

Carbon (C), % 0 to 0.13
0
Chromium (Cr), % 18 to 21
0
Copper (Cu), % 0 to 0.75
60 to 63
Iron (Fe), % 60.5 to 71.1
0 to 0.15
Lead (Pb), % 0
3.5 to 4.5
Manganese (Mn), % 0.5 to 2.5
0
Molybdenum (Mo), % 0.35 to 0.65
0
Nickel (Ni), % 8.0 to 10
0
Niobium (Nb), % 0.75 to 1.2
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0 to 0.15
0
Tungsten (W), % 1.3 to 1.8
0
Vanadium (V), % 0.1 to 0.3
0
Zinc (Zn), % 0
32.4 to 36.5