MakeItFrom.com
Menu (ESC)

AWS E349 vs. C86500 Bronze

AWS E349 belongs to the iron alloys classification, while C86500 bronze belongs to the copper alloys. There are 24 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is AWS E349 and the bottom bar is C86500 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 29
25
Poisson's Ratio 0.28
0.3
Shear Modulus, GPa 78
40
Tensile Strength: Ultimate (UTS), MPa 770
530

Thermal Properties

Latent Heat of Fusion, J/g 290
170
Melting Completion (Liquidus), °C 1470
880
Melting Onset (Solidus), °C 1420
860
Specific Heat Capacity, J/kg-K 470
390
Thermal Conductivity, W/m-K 15
86
Thermal Expansion, µm/m-K 14
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.1
22
Electrical Conductivity: Equal Weight (Specific), % IACS 2.4
25

Otherwise Unclassified Properties

Base Metal Price, % relative 25
23
Density, g/cm3 7.9
7.9
Embodied Carbon, kg CO2/kg material 4.9
2.8
Embodied Energy, MJ/kg 72
48
Embodied Water, L/kg 150
330

Common Calculations

Stiffness to Weight: Axial, points 14
7.4
Stiffness to Weight: Bending, points 25
20
Strength to Weight: Axial, points 27
19
Strength to Weight: Bending, points 24
18
Thermal Diffusivity, mm2/s 4.1
28
Thermal Shock Resistance, points 20
17

Alloy Composition

Aluminum (Al), % 0
0.5 to 1.5
Carbon (C), % 0 to 0.13
0
Chromium (Cr), % 18 to 21
0
Copper (Cu), % 0 to 0.75
55 to 60
Iron (Fe), % 60.5 to 71.1
0.4 to 2.0
Lead (Pb), % 0
0 to 0.4
Manganese (Mn), % 0.5 to 2.5
0.1 to 1.5
Molybdenum (Mo), % 0.35 to 0.65
0
Nickel (Ni), % 8.0 to 10
0 to 1.0
Niobium (Nb), % 0.75 to 1.2
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0 to 1.0
Titanium (Ti), % 0 to 0.15
0
Tungsten (W), % 1.3 to 1.8
0
Vanadium (V), % 0.1 to 0.3
0
Zinc (Zn), % 0
36 to 42
Residuals, % 0
0 to 1.0