MakeItFrom.com
Menu (ESC)

AWS E349 vs. C95820 Bronze

AWS E349 belongs to the iron alloys classification, while C95820 bronze belongs to the copper alloys. There are 24 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is AWS E349 and the bottom bar is C95820 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
120
Elongation at Break, % 29
15
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 78
44
Tensile Strength: Ultimate (UTS), MPa 770
730

Thermal Properties

Latent Heat of Fusion, J/g 290
230
Melting Completion (Liquidus), °C 1470
1080
Melting Onset (Solidus), °C 1420
1020
Specific Heat Capacity, J/kg-K 470
440
Thermal Conductivity, W/m-K 15
38
Thermal Expansion, µm/m-K 14
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.1
7.5
Electrical Conductivity: Equal Weight (Specific), % IACS 2.4
8.2

Otherwise Unclassified Properties

Base Metal Price, % relative 25
29
Density, g/cm3 7.9
8.3
Embodied Carbon, kg CO2/kg material 4.9
3.5
Embodied Energy, MJ/kg 72
56
Embodied Water, L/kg 150
380

Common Calculations

Stiffness to Weight: Axial, points 14
8.0
Stiffness to Weight: Bending, points 25
20
Strength to Weight: Axial, points 27
24
Strength to Weight: Bending, points 24
22
Thermal Diffusivity, mm2/s 4.1
11
Thermal Shock Resistance, points 20
25

Alloy Composition

Aluminum (Al), % 0
9.0 to 10
Carbon (C), % 0 to 0.13
0
Chromium (Cr), % 18 to 21
0
Copper (Cu), % 0 to 0.75
77.5 to 82.5
Iron (Fe), % 60.5 to 71.1
4.0 to 5.0
Lead (Pb), % 0
0 to 0.020
Manganese (Mn), % 0.5 to 2.5
0 to 1.5
Molybdenum (Mo), % 0.35 to 0.65
0
Nickel (Ni), % 8.0 to 10
4.5 to 5.8
Niobium (Nb), % 0.75 to 1.2
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0 to 0.1
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0 to 0.020
Titanium (Ti), % 0 to 0.15
0
Tungsten (W), % 1.3 to 1.8
0
Vanadium (V), % 0.1 to 0.3
0
Zinc (Zn), % 0
0 to 0.2
Residuals, % 0
0 to 0.8