MakeItFrom.com
Menu (ESC)

AWS E385 vs. B535.0 Aluminum

AWS E385 belongs to the iron alloys classification, while B535.0 aluminum belongs to the aluminum alloys. There are 24 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is AWS E385 and the bottom bar is B535.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
66
Elongation at Break, % 34
10
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 79
25
Tensile Strength: Ultimate (UTS), MPa 580
260

Thermal Properties

Latent Heat of Fusion, J/g 300
390
Melting Completion (Liquidus), °C 1440
630
Melting Onset (Solidus), °C 1390
550
Specific Heat Capacity, J/kg-K 460
910
Thermal Conductivity, W/m-K 14
96
Thermal Expansion, µm/m-K 14
25

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
24
Electrical Conductivity: Equal Weight (Specific), % IACS 1.9
82

Otherwise Unclassified Properties

Base Metal Price, % relative 31
9.5
Density, g/cm3 8.1
2.6
Embodied Carbon, kg CO2/kg material 5.8
9.4
Embodied Energy, MJ/kg 79
160
Embodied Water, L/kg 200
1180

Common Calculations

Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 24
51
Strength to Weight: Axial, points 20
28
Strength to Weight: Bending, points 19
35
Thermal Diffusivity, mm2/s 3.6
40
Thermal Shock Resistance, points 15
11

Alloy Composition

Aluminum (Al), % 0
91.7 to 93.4
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 19.5 to 21.5
0
Copper (Cu), % 1.2 to 2.0
0 to 0.1
Iron (Fe), % 41.8 to 50.1
0 to 0.15
Magnesium (Mg), % 0
6.5 to 7.5
Manganese (Mn), % 1.0 to 2.5
0 to 0.050
Molybdenum (Mo), % 4.2 to 5.2
0
Nickel (Ni), % 24 to 26
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 0.9
0 to 0.15
Sulfur (S), % 0 to 0.020
0
Titanium (Ti), % 0
0.1 to 0.25
Residuals, % 0
0 to 0.15