MakeItFrom.com
Menu (ESC)

AWS E385 vs. EN 1.8918 Steel

Both AWS E385 and EN 1.8918 steel are iron alloys. They have 49% of their average alloy composition in common. There are 24 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown.

For each property being compared, the top bar is AWS E385 and the bottom bar is EN 1.8918 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 34
19
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 79
73
Tensile Strength: Ultimate (UTS), MPa 580
640

Thermal Properties

Latent Heat of Fusion, J/g 300
250
Melting Completion (Liquidus), °C 1440
1460
Melting Onset (Solidus), °C 1390
1420
Specific Heat Capacity, J/kg-K 460
470
Thermal Conductivity, W/m-K 14
46
Thermal Expansion, µm/m-K 14
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
7.5
Electrical Conductivity: Equal Weight (Specific), % IACS 1.9
8.6

Otherwise Unclassified Properties

Base Metal Price, % relative 31
2.5
Density, g/cm3 8.1
7.8
Embodied Carbon, kg CO2/kg material 5.8
1.7
Embodied Energy, MJ/kg 79
24
Embodied Water, L/kg 200
51

Common Calculations

Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 20
23
Strength to Weight: Bending, points 19
21
Thermal Diffusivity, mm2/s 3.6
12
Thermal Shock Resistance, points 15
19

Alloy Composition

Aluminum (Al), % 0
0.020 to 0.050
Carbon (C), % 0 to 0.030
0 to 0.2
Chromium (Cr), % 19.5 to 21.5
0 to 0.3
Copper (Cu), % 1.2 to 2.0
0 to 0.7
Iron (Fe), % 41.8 to 50.1
95.2 to 98.9
Manganese (Mn), % 1.0 to 2.5
1.1 to 1.7
Molybdenum (Mo), % 4.2 to 5.2
0 to 0.1
Nickel (Ni), % 24 to 26
0 to 0.8
Niobium (Nb), % 0
0 to 0.050
Nitrogen (N), % 0
0 to 0.025
Phosphorus (P), % 0 to 0.030
0 to 0.020
Silicon (Si), % 0 to 0.9
0 to 0.6
Sulfur (S), % 0 to 0.020
0 to 0.0050
Titanium (Ti), % 0
0 to 0.030
Vanadium (V), % 0
0 to 0.2