MakeItFrom.com
Menu (ESC)

AWS E385 vs. EN AC-42000 Aluminum

AWS E385 belongs to the iron alloys classification, while EN AC-42000 aluminum belongs to the aluminum alloys. There are 24 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is AWS E385 and the bottom bar is EN AC-42000 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
70
Elongation at Break, % 34
1.1 to 2.4
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 79
26
Tensile Strength: Ultimate (UTS), MPa 580
170 to 270

Thermal Properties

Latent Heat of Fusion, J/g 300
500
Melting Completion (Liquidus), °C 1440
610
Melting Onset (Solidus), °C 1390
600
Specific Heat Capacity, J/kg-K 460
900
Thermal Conductivity, W/m-K 14
160
Thermal Expansion, µm/m-K 14
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
38
Electrical Conductivity: Equal Weight (Specific), % IACS 1.9
130

Otherwise Unclassified Properties

Base Metal Price, % relative 31
9.5
Density, g/cm3 8.1
2.6
Embodied Carbon, kg CO2/kg material 5.8
8.0
Embodied Energy, MJ/kg 79
150
Embodied Water, L/kg 200
1110

Common Calculations

Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 24
53
Strength to Weight: Axial, points 20
18 to 28
Strength to Weight: Bending, points 19
26 to 35
Thermal Diffusivity, mm2/s 3.6
66
Thermal Shock Resistance, points 15
7.9 to 12

Alloy Composition

Aluminum (Al), % 0
89.9 to 93.3
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 19.5 to 21.5
0
Copper (Cu), % 1.2 to 2.0
0 to 0.2
Iron (Fe), % 41.8 to 50.1
0 to 0.55
Lead (Pb), % 0
0 to 0.15
Magnesium (Mg), % 0
0.2 to 0.65
Manganese (Mn), % 1.0 to 2.5
0 to 0.35
Molybdenum (Mo), % 4.2 to 5.2
0
Nickel (Ni), % 24 to 26
0 to 0.15
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 0.9
6.5 to 7.5
Sulfur (S), % 0 to 0.020
0
Tin (Sn), % 0
0 to 0.050
Titanium (Ti), % 0
0 to 0.25
Zinc (Zn), % 0
0 to 0.15
Residuals, % 0
0 to 0.15