MakeItFrom.com
Menu (ESC)

AWS E385 vs. CC331G Bronze

AWS E385 belongs to the iron alloys classification, while CC331G bronze belongs to the copper alloys. There are 24 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is AWS E385 and the bottom bar is CC331G bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 34
20
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 79
43
Tensile Strength: Ultimate (UTS), MPa 580
620

Thermal Properties

Latent Heat of Fusion, J/g 300
230
Melting Completion (Liquidus), °C 1440
1060
Melting Onset (Solidus), °C 1390
1000
Specific Heat Capacity, J/kg-K 460
440
Thermal Conductivity, W/m-K 14
61
Thermal Expansion, µm/m-K 14
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
13
Electrical Conductivity: Equal Weight (Specific), % IACS 1.9
14

Otherwise Unclassified Properties

Base Metal Price, % relative 31
28
Density, g/cm3 8.1
8.3
Embodied Carbon, kg CO2/kg material 5.8
3.2
Embodied Energy, MJ/kg 79
53
Embodied Water, L/kg 200
390

Common Calculations

Stiffness to Weight: Axial, points 14
7.6
Stiffness to Weight: Bending, points 24
19
Strength to Weight: Axial, points 20
21
Strength to Weight: Bending, points 19
19
Thermal Diffusivity, mm2/s 3.6
17
Thermal Shock Resistance, points 15
22

Alloy Composition

Aluminum (Al), % 0
8.5 to 10.5
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 19.5 to 21.5
0
Copper (Cu), % 1.2 to 2.0
83 to 86.5
Iron (Fe), % 41.8 to 50.1
1.5 to 3.5
Lead (Pb), % 0
0 to 0.1
Magnesium (Mg), % 0
0 to 0.050
Manganese (Mn), % 1.0 to 2.5
0 to 1.0
Molybdenum (Mo), % 4.2 to 5.2
0
Nickel (Ni), % 24 to 26
0 to 1.5
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 0.9
0 to 0.2
Sulfur (S), % 0 to 0.020
0
Tin (Sn), % 0
0 to 0.2
Zinc (Zn), % 0
0 to 0.5