MakeItFrom.com
Menu (ESC)

AWS E409Nb vs. 1200 Aluminum

AWS E409Nb belongs to the iron alloys classification, while 1200 aluminum belongs to the aluminum alloys. There are 27 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is AWS E409Nb and the bottom bar is 1200 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
69
Elongation at Break, % 23
1.1 to 28
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 76
26
Tensile Strength: Ultimate (UTS), MPa 500
85 to 180
Tensile Strength: Yield (Proof), MPa 380
28 to 160

Thermal Properties

Latent Heat of Fusion, J/g 280
400
Melting Completion (Liquidus), °C 1460
660
Melting Onset (Solidus), °C 1410
650
Specific Heat Capacity, J/kg-K 480
900
Thermal Conductivity, W/m-K 25
230
Thermal Expansion, µm/m-K 14
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
58
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
190

Otherwise Unclassified Properties

Base Metal Price, % relative 13
9.0
Density, g/cm3 7.8
2.7
Embodied Carbon, kg CO2/kg material 2.9
8.2
Embodied Energy, MJ/kg 42
150
Embodied Water, L/kg 100
1190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
2.0 to 19
Resilience: Unit (Modulus of Resilience), kJ/m3 380
5.7 to 180
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
50
Strength to Weight: Axial, points 18
8.7 to 19
Strength to Weight: Bending, points 18
16 to 26
Thermal Diffusivity, mm2/s 6.8
92
Thermal Shock Resistance, points 14
3.8 to 8.1

Alloy Composition

Aluminum (Al), % 0
99 to 100
Carbon (C), % 0 to 0.12
0
Chromium (Cr), % 11 to 14
0
Copper (Cu), % 0 to 0.75
0 to 0.050
Iron (Fe), % 80.2 to 88.5
0 to 1.0
Manganese (Mn), % 0 to 1.0
0 to 0.050
Molybdenum (Mo), % 0 to 0.75
0
Nickel (Ni), % 0 to 0.6
0
Niobium (Nb), % 0.5 to 1.5
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0 to 1.0
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0 to 0.050
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.15