MakeItFrom.com
Menu (ESC)

AWS E409Nb vs. 6060 Aluminum

AWS E409Nb belongs to the iron alloys classification, while 6060 aluminum belongs to the aluminum alloys. There are 27 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is AWS E409Nb and the bottom bar is 6060 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
68
Elongation at Break, % 23
9.0 to 16
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 76
26
Tensile Strength: Ultimate (UTS), MPa 500
140 to 220
Tensile Strength: Yield (Proof), MPa 380
71 to 170

Thermal Properties

Latent Heat of Fusion, J/g 280
400
Melting Completion (Liquidus), °C 1460
660
Melting Onset (Solidus), °C 1410
610
Specific Heat Capacity, J/kg-K 480
900
Thermal Conductivity, W/m-K 25
210
Thermal Expansion, µm/m-K 14
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
54
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
180

Otherwise Unclassified Properties

Base Metal Price, % relative 13
9.5
Density, g/cm3 7.8
2.7
Embodied Carbon, kg CO2/kg material 2.9
8.3
Embodied Energy, MJ/kg 42
150
Embodied Water, L/kg 100
1190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
13 to 24
Resilience: Unit (Modulus of Resilience), kJ/m3 380
37 to 210
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
50
Strength to Weight: Axial, points 18
14 to 23
Strength to Weight: Bending, points 18
22 to 30
Thermal Diffusivity, mm2/s 6.8
85
Thermal Shock Resistance, points 14
6.3 to 9.9

Alloy Composition

Aluminum (Al), % 0
97.9 to 99.3
Carbon (C), % 0 to 0.12
0
Chromium (Cr), % 11 to 14
0 to 0.050
Copper (Cu), % 0 to 0.75
0 to 0.1
Iron (Fe), % 80.2 to 88.5
0.1 to 0.3
Magnesium (Mg), % 0
0.35 to 0.6
Manganese (Mn), % 0 to 1.0
0 to 0.1
Molybdenum (Mo), % 0 to 0.75
0
Nickel (Ni), % 0 to 0.6
0
Niobium (Nb), % 0.5 to 1.5
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0.3 to 0.6
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0 to 0.1
Zinc (Zn), % 0
0 to 0.15
Residuals, % 0
0 to 0.15