MakeItFrom.com
Menu (ESC)

AWS E409Nb vs. 6066 Aluminum

AWS E409Nb belongs to the iron alloys classification, while 6066 aluminum belongs to the aluminum alloys. There are 27 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is AWS E409Nb and the bottom bar is 6066 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
70
Elongation at Break, % 23
7.8 to 17
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 76
26
Tensile Strength: Ultimate (UTS), MPa 500
160 to 400
Tensile Strength: Yield (Proof), MPa 380
93 to 360

Thermal Properties

Latent Heat of Fusion, J/g 280
410
Melting Completion (Liquidus), °C 1460
650
Melting Onset (Solidus), °C 1410
560
Specific Heat Capacity, J/kg-K 480
890
Thermal Conductivity, W/m-K 25
150
Thermal Expansion, µm/m-K 14
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
40
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
130

Otherwise Unclassified Properties

Base Metal Price, % relative 13
9.5
Density, g/cm3 7.8
2.8
Embodied Carbon, kg CO2/kg material 2.9
8.3
Embodied Energy, MJ/kg 42
150
Embodied Water, L/kg 100
1160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
23 to 52
Resilience: Unit (Modulus of Resilience), kJ/m3 380
61 to 920
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
49
Strength to Weight: Axial, points 18
16 to 39
Strength to Weight: Bending, points 18
23 to 43
Thermal Diffusivity, mm2/s 6.8
61
Thermal Shock Resistance, points 14
6.9 to 17

Alloy Composition

Aluminum (Al), % 0
93 to 97
Carbon (C), % 0 to 0.12
0
Chromium (Cr), % 11 to 14
0 to 0.4
Copper (Cu), % 0 to 0.75
0.7 to 1.2
Iron (Fe), % 80.2 to 88.5
0 to 0.5
Magnesium (Mg), % 0
0.8 to 1.4
Manganese (Mn), % 0 to 1.0
0.6 to 1.1
Molybdenum (Mo), % 0 to 0.75
0
Nickel (Ni), % 0 to 0.6
0
Niobium (Nb), % 0.5 to 1.5
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0.9 to 1.8
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0 to 0.2
Zinc (Zn), % 0
0 to 0.25
Residuals, % 0
0 to 0.15