MakeItFrom.com
Menu (ESC)

AWS E409Nb vs. 7005 Aluminum

AWS E409Nb belongs to the iron alloys classification, while 7005 aluminum belongs to the aluminum alloys. There are 27 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is AWS E409Nb and the bottom bar is 7005 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
70
Elongation at Break, % 23
10 to 20
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 76
26
Tensile Strength: Ultimate (UTS), MPa 500
200 to 400
Tensile Strength: Yield (Proof), MPa 380
95 to 350

Thermal Properties

Latent Heat of Fusion, J/g 280
380
Melting Completion (Liquidus), °C 1460
640
Melting Onset (Solidus), °C 1410
610
Specific Heat Capacity, J/kg-K 480
880
Thermal Conductivity, W/m-K 25
140 to 170
Thermal Expansion, µm/m-K 14
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
35 to 43
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
110 to 130

Otherwise Unclassified Properties

Base Metal Price, % relative 13
9.5
Density, g/cm3 7.8
2.9
Embodied Carbon, kg CO2/kg material 2.9
8.3
Embodied Energy, MJ/kg 42
150
Embodied Water, L/kg 100
1150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
32 to 57
Resilience: Unit (Modulus of Resilience), kJ/m3 380
65 to 850
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
47
Strength to Weight: Axial, points 18
19 to 38
Strength to Weight: Bending, points 18
26 to 41
Thermal Diffusivity, mm2/s 6.8
54 to 65
Thermal Shock Resistance, points 14
8.7 to 18

Alloy Composition

Aluminum (Al), % 0
91 to 94.7
Carbon (C), % 0 to 0.12
0
Chromium (Cr), % 11 to 14
0.060 to 0.2
Copper (Cu), % 0 to 0.75
0 to 0.1
Iron (Fe), % 80.2 to 88.5
0 to 0.4
Magnesium (Mg), % 0
1.0 to 1.8
Manganese (Mn), % 0 to 1.0
0.2 to 0.7
Molybdenum (Mo), % 0 to 0.75
0
Nickel (Ni), % 0 to 0.6
0
Niobium (Nb), % 0.5 to 1.5
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0 to 0.35
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0.010 to 0.060
Zinc (Zn), % 0
4.0 to 5.0
Zirconium (Zr), % 0
0.080 to 0.2
Residuals, % 0
0 to 0.15