MakeItFrom.com
Menu (ESC)

AWS E409Nb vs. ASTM A182 Grade F92

Both AWS E409Nb and ASTM A182 grade F92 are iron alloys. They have a moderately high 95% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is AWS E409Nb and the bottom bar is ASTM A182 grade F92.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 23
22
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 76
76
Tensile Strength: Ultimate (UTS), MPa 500
690
Tensile Strength: Yield (Proof), MPa 380
500

Thermal Properties

Latent Heat of Fusion, J/g 280
260
Melting Completion (Liquidus), °C 1460
1490
Melting Onset (Solidus), °C 1410
1450
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 25
26
Thermal Expansion, µm/m-K 14
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
9.3
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
10

Otherwise Unclassified Properties

Base Metal Price, % relative 13
11
Density, g/cm3 7.8
7.9
Embodied Carbon, kg CO2/kg material 2.9
2.8
Embodied Energy, MJ/kg 42
40
Embodied Water, L/kg 100
89

Common Calculations

PREN (Pitting Resistance) 14
14
Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
140
Resilience: Unit (Modulus of Resilience), kJ/m3 380
650
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 18
24
Strength to Weight: Bending, points 18
22
Thermal Diffusivity, mm2/s 6.8
6.9
Thermal Shock Resistance, points 14
19

Alloy Composition

Aluminum (Al), % 0
0 to 0.020
Boron (B), % 0
0.0010 to 0.0060
Carbon (C), % 0 to 0.12
0.070 to 0.13
Chromium (Cr), % 11 to 14
8.5 to 9.5
Copper (Cu), % 0 to 0.75
0
Iron (Fe), % 80.2 to 88.5
85.8 to 89.1
Manganese (Mn), % 0 to 1.0
0.3 to 0.6
Molybdenum (Mo), % 0 to 0.75
0.3 to 0.6
Nickel (Ni), % 0 to 0.6
0 to 0.4
Niobium (Nb), % 0.5 to 1.5
0.040 to 0.090
Nitrogen (N), % 0
0.030 to 0.070
Phosphorus (P), % 0 to 0.040
0 to 0.020
Silicon (Si), % 0 to 1.0
0 to 0.5
Sulfur (S), % 0 to 0.030
0 to 0.010
Titanium (Ti), % 0
0 to 0.010
Tungsten (W), % 0
1.5 to 2.0
Vanadium (V), % 0
0.15 to 0.25
Zirconium (Zr), % 0
0 to 0.010