MakeItFrom.com
Menu (ESC)

AWS E409Nb vs. EN 1.4611 Stainless Steel

Both AWS E409Nb and EN 1.4611 stainless steel are iron alloys. They have a moderately high 91% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is AWS E409Nb and the bottom bar is EN 1.4611 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 23
21
Poisson's Ratio 0.28
0.27
Shear Modulus, GPa 76
78
Tensile Strength: Ultimate (UTS), MPa 500
530
Tensile Strength: Yield (Proof), MPa 380
280

Thermal Properties

Latent Heat of Fusion, J/g 280
290
Melting Completion (Liquidus), °C 1460
1440
Melting Onset (Solidus), °C 1410
1390
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 25
21
Thermal Expansion, µm/m-K 14
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
2.5
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
3.0

Otherwise Unclassified Properties

Base Metal Price, % relative 13
11
Density, g/cm3 7.8
7.7
Embodied Carbon, kg CO2/kg material 2.9
2.5
Embodied Energy, MJ/kg 42
36
Embodied Water, L/kg 100
140

Common Calculations

PREN (Pitting Resistance) 14
21
Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
91
Resilience: Unit (Modulus of Resilience), kJ/m3 380
190
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 18
19
Strength to Weight: Bending, points 18
19
Thermal Diffusivity, mm2/s 6.8
5.7
Thermal Shock Resistance, points 14
18

Alloy Composition

Aluminum (Al), % 0
0 to 0.050
Carbon (C), % 0 to 0.12
0 to 0.030
Chromium (Cr), % 11 to 14
19 to 22
Copper (Cu), % 0 to 0.75
0 to 0.5
Iron (Fe), % 80.2 to 88.5
73.3 to 80.8
Manganese (Mn), % 0 to 1.0
0 to 1.0
Molybdenum (Mo), % 0 to 0.75
0 to 0.5
Nickel (Ni), % 0 to 0.6
0 to 0.5
Niobium (Nb), % 0.5 to 1.5
0
Phosphorus (P), % 0 to 0.040
0 to 0.050
Silicon (Si), % 0 to 1.0
0 to 1.0
Sulfur (S), % 0 to 0.030
0 to 0.050
Titanium (Ti), % 0
0.2 to 1.0