MakeItFrom.com
Menu (ESC)

AWS E409Nb vs. C65500 Bronze

AWS E409Nb belongs to the iron alloys classification, while C65500 bronze belongs to the copper alloys. There are 27 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is AWS E409Nb and the bottom bar is C65500 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
120
Elongation at Break, % 23
4.0 to 70
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 76
43
Tensile Strength: Ultimate (UTS), MPa 500
360 to 760
Tensile Strength: Yield (Proof), MPa 380
120 to 430

Thermal Properties

Latent Heat of Fusion, J/g 280
260
Melting Completion (Liquidus), °C 1460
1030
Melting Onset (Solidus), °C 1410
970
Specific Heat Capacity, J/kg-K 480
400
Thermal Conductivity, W/m-K 25
36
Thermal Expansion, µm/m-K 14
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
7.0
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
7.3

Otherwise Unclassified Properties

Base Metal Price, % relative 13
29
Density, g/cm3 7.8
8.6
Embodied Carbon, kg CO2/kg material 2.9
2.7
Embodied Energy, MJ/kg 42
42
Embodied Water, L/kg 100
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
11 to 450
Resilience: Unit (Modulus of Resilience), kJ/m3 380
62 to 790
Stiffness to Weight: Axial, points 14
7.5
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 18
12 to 24
Strength to Weight: Bending, points 18
13 to 21
Thermal Diffusivity, mm2/s 6.8
10
Thermal Shock Resistance, points 14
12 to 26

Alloy Composition

Carbon (C), % 0 to 0.12
0
Chromium (Cr), % 11 to 14
0
Copper (Cu), % 0 to 0.75
91.5 to 96.7
Iron (Fe), % 80.2 to 88.5
0 to 0.8
Lead (Pb), % 0
0 to 0.050
Manganese (Mn), % 0 to 1.0
0.5 to 1.3
Molybdenum (Mo), % 0 to 0.75
0
Nickel (Ni), % 0 to 0.6
0 to 0.6
Niobium (Nb), % 0.5 to 1.5
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
2.8 to 3.8
Sulfur (S), % 0 to 0.030
0
Zinc (Zn), % 0
0 to 1.5
Residuals, % 0
0 to 0.5