MakeItFrom.com
Menu (ESC)

AWS E410 vs. 5083 Aluminum

AWS E410 belongs to the iron alloys classification, while 5083 aluminum belongs to the aluminum alloys. There are 27 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is AWS E410 and the bottom bar is 5083 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
68
Elongation at Break, % 23
1.1 to 17
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 76
26
Tensile Strength: Ultimate (UTS), MPa 580
290 to 390
Tensile Strength: Yield (Proof), MPa 440
110 to 340

Thermal Properties

Latent Heat of Fusion, J/g 270
400
Melting Completion (Liquidus), °C 1450
640
Melting Onset (Solidus), °C 1400
580
Specific Heat Capacity, J/kg-K 480
900
Thermal Conductivity, W/m-K 28
120
Thermal Expansion, µm/m-K 14
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
29
Electrical Conductivity: Equal Weight (Specific), % IACS 3.4
96

Otherwise Unclassified Properties

Base Metal Price, % relative 7.5
9.5
Density, g/cm3 7.8
2.7
Embodied Carbon, kg CO2/kg material 2.0
8.9
Embodied Energy, MJ/kg 28
150
Embodied Water, L/kg 100
1170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
4.2 to 42
Resilience: Unit (Modulus of Resilience), kJ/m3 500
95 to 860
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
50
Strength to Weight: Axial, points 21
29 to 40
Strength to Weight: Bending, points 20
36 to 44
Thermal Diffusivity, mm2/s 7.5
48
Thermal Shock Resistance, points 16
12 to 17

Alloy Composition

Aluminum (Al), % 0
92.4 to 95.6
Carbon (C), % 0 to 0.12
0
Chromium (Cr), % 11 to 13.5
0.050 to 0.25
Copper (Cu), % 0 to 0.75
0 to 0.1
Iron (Fe), % 82.2 to 89
0 to 0.4
Magnesium (Mg), % 0
4.0 to 4.9
Manganese (Mn), % 0 to 1.0
0.4 to 1.0
Molybdenum (Mo), % 0 to 0.75
0
Nickel (Ni), % 0 to 0.7
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 0.9
0 to 0.4
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0 to 0.15
Zinc (Zn), % 0
0 to 0.25
Residuals, % 0
0 to 0.15