MakeItFrom.com
Menu (ESC)

AWS E410 vs. 5088 Aluminum

AWS E410 belongs to the iron alloys classification, while 5088 aluminum belongs to the aluminum alloys. There are 27 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is AWS E410 and the bottom bar is 5088 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
68
Elongation at Break, % 23
29
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 76
25
Tensile Strength: Ultimate (UTS), MPa 580
310
Tensile Strength: Yield (Proof), MPa 440
150

Thermal Properties

Latent Heat of Fusion, J/g 270
390
Melting Completion (Liquidus), °C 1450
640
Melting Onset (Solidus), °C 1400
540
Specific Heat Capacity, J/kg-K 480
900
Thermal Conductivity, W/m-K 28
120
Thermal Expansion, µm/m-K 14
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
29
Electrical Conductivity: Equal Weight (Specific), % IACS 3.4
98

Otherwise Unclassified Properties

Base Metal Price, % relative 7.5
9.5
Density, g/cm3 7.8
2.7
Embodied Carbon, kg CO2/kg material 2.0
9.0
Embodied Energy, MJ/kg 28
150
Embodied Water, L/kg 100
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
76
Resilience: Unit (Modulus of Resilience), kJ/m3 500
170
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
50
Strength to Weight: Axial, points 21
32
Strength to Weight: Bending, points 20
38
Thermal Diffusivity, mm2/s 7.5
51
Thermal Shock Resistance, points 16
14

Alloy Composition

Aluminum (Al), % 0
92.4 to 94.8
Carbon (C), % 0 to 0.12
0
Chromium (Cr), % 11 to 13.5
0 to 0.15
Copper (Cu), % 0 to 0.75
0 to 0.25
Iron (Fe), % 82.2 to 89
0.1 to 0.35
Magnesium (Mg), % 0
4.7 to 5.5
Manganese (Mn), % 0 to 1.0
0.2 to 0.5
Molybdenum (Mo), % 0 to 0.75
0
Nickel (Ni), % 0 to 0.7
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 0.9
0 to 0.2
Sulfur (S), % 0 to 0.030
0
Zinc (Zn), % 0
0.2 to 0.4
Zirconium (Zr), % 0
0 to 0.15
Residuals, % 0
0 to 0.15