MakeItFrom.com
Menu (ESC)

AWS E410 vs. A413.0 Aluminum

AWS E410 belongs to the iron alloys classification, while A413.0 aluminum belongs to the aluminum alloys. There are 27 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is AWS E410 and the bottom bar is A413.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
73
Elongation at Break, % 23
3.5
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 76
27
Tensile Strength: Ultimate (UTS), MPa 580
240
Tensile Strength: Yield (Proof), MPa 440
130

Thermal Properties

Latent Heat of Fusion, J/g 270
570
Melting Completion (Liquidus), °C 1450
590
Melting Onset (Solidus), °C 1400
580
Specific Heat Capacity, J/kg-K 480
900
Thermal Conductivity, W/m-K 28
120
Thermal Expansion, µm/m-K 14
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
31
Electrical Conductivity: Equal Weight (Specific), % IACS 3.4
110

Otherwise Unclassified Properties

Base Metal Price, % relative 7.5
9.5
Density, g/cm3 7.8
2.6
Embodied Carbon, kg CO2/kg material 2.0
7.6
Embodied Energy, MJ/kg 28
140
Embodied Water, L/kg 100
1040

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
7.1
Resilience: Unit (Modulus of Resilience), kJ/m3 500
120
Stiffness to Weight: Axial, points 14
16
Stiffness to Weight: Bending, points 25
54
Strength to Weight: Axial, points 21
25
Strength to Weight: Bending, points 20
33
Thermal Diffusivity, mm2/s 7.5
52
Thermal Shock Resistance, points 16
11

Alloy Composition

Aluminum (Al), % 0
82.9 to 89
Carbon (C), % 0 to 0.12
0
Chromium (Cr), % 11 to 13.5
0
Copper (Cu), % 0 to 0.75
0 to 1.0
Iron (Fe), % 82.2 to 89
0 to 1.3
Magnesium (Mg), % 0
0 to 0.1
Manganese (Mn), % 0 to 1.0
0 to 0.35
Molybdenum (Mo), % 0 to 0.75
0
Nickel (Ni), % 0 to 0.7
0 to 0.5
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 0.9
11 to 13
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0 to 0.15
Zinc (Zn), % 0
0 to 0.5
Residuals, % 0
0 to 0.25