MakeItFrom.com
Menu (ESC)

AWS E410 vs. EN 1.4429 Stainless Steel

Both AWS E410 and EN 1.4429 stainless steel are iron alloys. They have 80% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is AWS E410 and the bottom bar is EN 1.4429 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 23
40
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 76
78
Tensile Strength: Ultimate (UTS), MPa 580
690
Tensile Strength: Yield (Proof), MPa 440
320

Thermal Properties

Latent Heat of Fusion, J/g 270
290
Melting Completion (Liquidus), °C 1450
1440
Melting Onset (Solidus), °C 1400
1400
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 28
15
Thermal Expansion, µm/m-K 14
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 3.4
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 7.5
20
Density, g/cm3 7.8
7.9
Embodied Carbon, kg CO2/kg material 2.0
4.0
Embodied Energy, MJ/kg 28
55
Embodied Water, L/kg 100
150

Common Calculations

PREN (Pitting Resistance) 13
29
Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
230
Resilience: Unit (Modulus of Resilience), kJ/m3 500
250
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 21
24
Strength to Weight: Bending, points 20
22
Thermal Diffusivity, mm2/s 7.5
4.0
Thermal Shock Resistance, points 16
15

Alloy Composition

Carbon (C), % 0 to 0.12
0 to 0.030
Chromium (Cr), % 11 to 13.5
16.5 to 18.5
Copper (Cu), % 0 to 0.75
0
Iron (Fe), % 82.2 to 89
61.2 to 69.9
Manganese (Mn), % 0 to 1.0
0 to 2.0
Molybdenum (Mo), % 0 to 0.75
2.5 to 3.0
Nickel (Ni), % 0 to 0.7
11 to 14
Nitrogen (N), % 0
0.12 to 0.22
Phosphorus (P), % 0 to 0.040
0 to 0.045
Silicon (Si), % 0 to 0.9
0 to 1.0
Sulfur (S), % 0 to 0.030
0 to 0.015