MakeItFrom.com
Menu (ESC)

AWS E410 vs. EN 1.4736 Stainless Steel

Both AWS E410 and EN 1.4736 stainless steel are iron alloys. They have a moderately high 92% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is AWS E410 and the bottom bar is EN 1.4736 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 23
28
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 76
76
Tensile Strength: Ultimate (UTS), MPa 580
580
Tensile Strength: Yield (Proof), MPa 440
310

Thermal Properties

Latent Heat of Fusion, J/g 270
290
Melting Completion (Liquidus), °C 1450
1420
Melting Onset (Solidus), °C 1400
1380
Specific Heat Capacity, J/kg-K 480
490
Thermal Conductivity, W/m-K 28
21
Thermal Expansion, µm/m-K 14
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 3.4
3.4

Otherwise Unclassified Properties

Base Metal Price, % relative 7.5
9.0
Density, g/cm3 7.8
7.6
Embodied Carbon, kg CO2/kg material 2.0
2.4
Embodied Energy, MJ/kg 28
35
Embodied Water, L/kg 100
140

Common Calculations

PREN (Pitting Resistance) 13
18
Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
140
Resilience: Unit (Modulus of Resilience), kJ/m3 500
250
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 21
21
Strength to Weight: Bending, points 20
20
Thermal Diffusivity, mm2/s 7.5
5.6
Thermal Shock Resistance, points 16
21

Alloy Composition

Aluminum (Al), % 0
1.7 to 2.1
Carbon (C), % 0 to 0.12
0 to 0.040
Chromium (Cr), % 11 to 13.5
17 to 18
Copper (Cu), % 0 to 0.75
0
Iron (Fe), % 82.2 to 89
77 to 81.1
Manganese (Mn), % 0 to 1.0
0 to 1.0
Molybdenum (Mo), % 0 to 0.75
0
Nickel (Ni), % 0 to 0.7
0
Phosphorus (P), % 0 to 0.040
0 to 0.040
Silicon (Si), % 0 to 0.9
0 to 1.0
Sulfur (S), % 0 to 0.030
0 to 0.015
Titanium (Ti), % 0
0.2 to 0.8