MakeItFrom.com
Menu (ESC)

AWS E410 vs. CC332G Bronze

AWS E410 belongs to the iron alloys classification, while CC332G bronze belongs to the copper alloys. There are 27 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is AWS E410 and the bottom bar is CC332G bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
120
Elongation at Break, % 23
22
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 76
43
Tensile Strength: Ultimate (UTS), MPa 580
620
Tensile Strength: Yield (Proof), MPa 440
250

Thermal Properties

Latent Heat of Fusion, J/g 270
230
Melting Completion (Liquidus), °C 1450
1060
Melting Onset (Solidus), °C 1400
1010
Specific Heat Capacity, J/kg-K 480
440
Thermal Conductivity, W/m-K 28
45
Thermal Expansion, µm/m-K 14
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
11
Electrical Conductivity: Equal Weight (Specific), % IACS 3.4
12

Otherwise Unclassified Properties

Base Metal Price, % relative 7.5
29
Density, g/cm3 7.8
8.3
Embodied Carbon, kg CO2/kg material 2.0
3.4
Embodied Energy, MJ/kg 28
55
Embodied Water, L/kg 100
390

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
110
Resilience: Unit (Modulus of Resilience), kJ/m3 500
270
Stiffness to Weight: Axial, points 14
7.7
Stiffness to Weight: Bending, points 25
20
Strength to Weight: Axial, points 21
21
Strength to Weight: Bending, points 20
19
Thermal Diffusivity, mm2/s 7.5
12
Thermal Shock Resistance, points 16
21

Alloy Composition

Aluminum (Al), % 0
8.5 to 10.5
Carbon (C), % 0 to 0.12
0
Chromium (Cr), % 11 to 13.5
0
Copper (Cu), % 0 to 0.75
80 to 86
Iron (Fe), % 82.2 to 89
1.0 to 3.0
Lead (Pb), % 0
0 to 0.1
Magnesium (Mg), % 0
0 to 0.050
Manganese (Mn), % 0 to 1.0
0 to 2.0
Molybdenum (Mo), % 0 to 0.75
0
Nickel (Ni), % 0 to 0.7
1.5 to 4.0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 0.9
0 to 0.2
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0 to 0.2
Zinc (Zn), % 0
0 to 0.5