MakeItFrom.com
Menu (ESC)

AWS E410 vs. C67500 Bronze

AWS E410 belongs to the iron alloys classification, while C67500 bronze belongs to the copper alloys. There are 27 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is AWS E410 and the bottom bar is C67500 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
100
Elongation at Break, % 23
14 to 33
Poisson's Ratio 0.28
0.3
Shear Modulus, GPa 76
40
Tensile Strength: Ultimate (UTS), MPa 580
430 to 580
Tensile Strength: Yield (Proof), MPa 440
170 to 370

Thermal Properties

Latent Heat of Fusion, J/g 270
170
Melting Completion (Liquidus), °C 1450
890
Melting Onset (Solidus), °C 1400
870
Specific Heat Capacity, J/kg-K 480
390
Thermal Conductivity, W/m-K 28
110
Thermal Expansion, µm/m-K 14
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
24
Electrical Conductivity: Equal Weight (Specific), % IACS 3.4
27

Otherwise Unclassified Properties

Base Metal Price, % relative 7.5
23
Density, g/cm3 7.8
8.0
Embodied Carbon, kg CO2/kg material 2.0
2.8
Embodied Energy, MJ/kg 28
47
Embodied Water, L/kg 100
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
61 to 130
Resilience: Unit (Modulus of Resilience), kJ/m3 500
130 to 650
Stiffness to Weight: Axial, points 14
7.3
Stiffness to Weight: Bending, points 25
20
Strength to Weight: Axial, points 21
15 to 20
Strength to Weight: Bending, points 20
16 to 19
Thermal Diffusivity, mm2/s 7.5
34
Thermal Shock Resistance, points 16
14 to 19

Alloy Composition

Aluminum (Al), % 0
0 to 0.25
Carbon (C), % 0 to 0.12
0
Chromium (Cr), % 11 to 13.5
0
Copper (Cu), % 0 to 0.75
57 to 60
Iron (Fe), % 82.2 to 89
0.8 to 2.0
Lead (Pb), % 0
0 to 0.2
Manganese (Mn), % 0 to 1.0
0.050 to 0.5
Molybdenum (Mo), % 0 to 0.75
0
Nickel (Ni), % 0 to 0.7
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 0.9
0
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0.5 to 1.5
Zinc (Zn), % 0
35.1 to 41.7
Residuals, % 0
0 to 0.5