MakeItFrom.com
Menu (ESC)

AWS E410NiMo vs. A206.0 Aluminum

AWS E410NiMo belongs to the iron alloys classification, while A206.0 aluminum belongs to the aluminum alloys. There are 24 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is AWS E410NiMo and the bottom bar is A206.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
70
Elongation at Break, % 17
4.2 to 10
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 76
26
Tensile Strength: Ultimate (UTS), MPa 850
390 to 440

Thermal Properties

Latent Heat of Fusion, J/g 280
390
Melting Completion (Liquidus), °C 1440
670
Melting Onset (Solidus), °C 1400
550
Specific Heat Capacity, J/kg-K 480
880
Thermal Conductivity, W/m-K 24
130
Thermal Expansion, µm/m-K 14
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.7
30
Electrical Conductivity: Equal Weight (Specific), % IACS 3.1
90

Otherwise Unclassified Properties

Base Metal Price, % relative 10
11
Density, g/cm3 7.8
3.0
Embodied Carbon, kg CO2/kg material 2.4
8.0
Embodied Energy, MJ/kg 34
150
Embodied Water, L/kg 110
1150

Common Calculations

Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
46
Strength to Weight: Axial, points 30
36 to 41
Strength to Weight: Bending, points 26
39 to 43
Thermal Diffusivity, mm2/s 6.5
48
Thermal Shock Resistance, points 23
17 to 19

Alloy Composition

Aluminum (Al), % 0
93.9 to 95.7
Carbon (C), % 0 to 0.060
0
Chromium (Cr), % 11 to 12.5
0
Copper (Cu), % 0 to 0.75
4.2 to 5.0
Iron (Fe), % 79 to 84.6
0 to 0.1
Magnesium (Mg), % 0
0 to 0.15
Manganese (Mn), % 0 to 1.0
0 to 0.2
Molybdenum (Mo), % 0.4 to 0.7
0
Nickel (Ni), % 4.0 to 5.0
0 to 0.050
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 0.9
0 to 0.050
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0 to 0.050
Titanium (Ti), % 0
0.15 to 0.3
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.15