MakeItFrom.com
Menu (ESC)

AWS E430 vs. ASTM A387 Grade 9 Steel

Both AWS E430 and ASTM A387 grade 9 steel are iron alloys. They have a moderately high 92% of their average alloy composition in common. There are 25 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is AWS E430 and the bottom bar is ASTM A387 grade 9 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 23
20 to 21
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 77
75
Tensile Strength: Ultimate (UTS), MPa 500
500 to 600

Thermal Properties

Latent Heat of Fusion, J/g 280
270
Melting Completion (Liquidus), °C 1440
1460
Melting Onset (Solidus), °C 1400
1410
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 25
26
Thermal Expansion, µm/m-K 14
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.8
9.0
Electrical Conductivity: Equal Weight (Specific), % IACS 3.2
10

Otherwise Unclassified Properties

Base Metal Price, % relative 9.0
6.5
Density, g/cm3 7.7
7.8
Embodied Carbon, kg CO2/kg material 2.2
2.1
Embodied Energy, MJ/kg 31
28
Embodied Water, L/kg 120
87

Common Calculations

PREN (Pitting Resistance) 18
12
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 18
18 to 21
Strength to Weight: Bending, points 18
18 to 20
Thermal Diffusivity, mm2/s 6.7
6.9
Thermal Shock Resistance, points 13
14 to 17

Alloy Composition

Carbon (C), % 0 to 0.1
0 to 0.15
Chromium (Cr), % 15 to 18
8.0 to 10
Copper (Cu), % 0 to 0.75
0
Iron (Fe), % 77.8 to 85
87.1 to 90.8
Manganese (Mn), % 0 to 1.0
0.3 to 0.6
Molybdenum (Mo), % 0 to 0.75
0.9 to 1.1
Nickel (Ni), % 0 to 0.6
0
Phosphorus (P), % 0 to 0.040
0 to 0.025
Silicon (Si), % 0 to 0.9
0 to 1.0
Sulfur (S), % 0 to 0.030
0 to 0.025
Vanadium (V), % 0
0 to 0.040