MakeItFrom.com
Menu (ESC)

AWS E430 vs. S31730 Stainless Steel

Both AWS E430 and S31730 stainless steel are iron alloys. They have 75% of their average alloy composition in common. There are 21 material properties with values for both materials. Properties with values for just one material (13, in this case) are not shown.

For each property being compared, the top bar is AWS E430 and the bottom bar is S31730 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 23
40
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 77
77
Tensile Strength: Ultimate (UTS), MPa 500
540

Thermal Properties

Latent Heat of Fusion, J/g 280
290
Melting Completion (Liquidus), °C 1440
1430
Melting Onset (Solidus), °C 1400
1390
Specific Heat Capacity, J/kg-K 480
470
Thermal Expansion, µm/m-K 14
16

Otherwise Unclassified Properties

Base Metal Price, % relative 9.0
24
Density, g/cm3 7.7
8.0
Embodied Carbon, kg CO2/kg material 2.2
4.6
Embodied Energy, MJ/kg 31
63
Embodied Water, L/kg 120
180

Common Calculations

PREN (Pitting Resistance) 18
30
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 18
19
Strength to Weight: Bending, points 18
18
Thermal Shock Resistance, points 13
12

Alloy Composition

Carbon (C), % 0 to 0.1
0 to 0.030
Chromium (Cr), % 15 to 18
17 to 19
Copper (Cu), % 0 to 0.75
4.0 to 5.0
Iron (Fe), % 77.8 to 85
52.4 to 61
Manganese (Mn), % 0 to 1.0
0 to 2.0
Molybdenum (Mo), % 0 to 0.75
3.0 to 4.0
Nickel (Ni), % 0 to 0.6
15 to 16.5
Nitrogen (N), % 0
0 to 0.045
Phosphorus (P), % 0 to 0.040
0 to 0.040
Silicon (Si), % 0 to 0.9
0 to 1.0
Sulfur (S), % 0 to 0.030
0 to 0.010