MakeItFrom.com
Menu (ESC)

AWS E430Nb vs. 240.0 Aluminum

AWS E430Nb belongs to the iron alloys classification, while 240.0 aluminum belongs to the aluminum alloys. There are 24 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is AWS E430Nb and the bottom bar is 240.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
72
Elongation at Break, % 23
1.0
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 77
27
Tensile Strength: Ultimate (UTS), MPa 500
240

Thermal Properties

Latent Heat of Fusion, J/g 280
380
Melting Completion (Liquidus), °C 1450
600
Melting Onset (Solidus), °C 1410
520
Specific Heat Capacity, J/kg-K 480
860
Thermal Conductivity, W/m-K 24
96
Thermal Expansion, µm/m-K 14
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.6
23
Electrical Conductivity: Equal Weight (Specific), % IACS 3.0
65

Otherwise Unclassified Properties

Base Metal Price, % relative 15
12
Density, g/cm3 7.7
3.2
Embodied Carbon, kg CO2/kg material 3.1
8.7
Embodied Energy, MJ/kg 45
150
Embodied Water, L/kg 120
1100

Common Calculations

Stiffness to Weight: Axial, points 14
12
Stiffness to Weight: Bending, points 25
43
Strength to Weight: Axial, points 18
20
Strength to Weight: Bending, points 18
26
Thermal Diffusivity, mm2/s 6.6
35
Thermal Shock Resistance, points 13
11

Alloy Composition

Aluminum (Al), % 0
81.7 to 86.9
Carbon (C), % 0 to 0.1
0
Chromium (Cr), % 15 to 18
0
Copper (Cu), % 0 to 0.75
7.0 to 9.0
Iron (Fe), % 76.2 to 84.5
0 to 0.5
Magnesium (Mg), % 0
5.5 to 6.5
Manganese (Mn), % 0 to 1.0
0.3 to 0.7
Molybdenum (Mo), % 0 to 0.75
0
Nickel (Ni), % 0 to 0.6
0.3 to 0.7
Niobium (Nb), % 0.5 to 1.5
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0 to 0.5
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0 to 0.2
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.15