MakeItFrom.com
Menu (ESC)

AWS E430Nb vs. CC496K Bronze

AWS E430Nb belongs to the iron alloys classification, while CC496K bronze belongs to the copper alloys. There are 24 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is AWS E430Nb and the bottom bar is CC496K bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
97
Elongation at Break, % 23
8.6
Poisson's Ratio 0.28
0.35
Shear Modulus, GPa 77
36
Tensile Strength: Ultimate (UTS), MPa 500
210

Thermal Properties

Latent Heat of Fusion, J/g 280
170
Melting Completion (Liquidus), °C 1450
900
Melting Onset (Solidus), °C 1410
820
Specific Heat Capacity, J/kg-K 480
340
Thermal Conductivity, W/m-K 24
52
Thermal Expansion, µm/m-K 14
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.6
11
Electrical Conductivity: Equal Weight (Specific), % IACS 3.0
11

Otherwise Unclassified Properties

Base Metal Price, % relative 15
31
Density, g/cm3 7.7
9.2
Embodied Carbon, kg CO2/kg material 3.1
3.3
Embodied Energy, MJ/kg 45
52
Embodied Water, L/kg 120
380

Common Calculations

Stiffness to Weight: Axial, points 14
5.9
Stiffness to Weight: Bending, points 25
17
Strength to Weight: Axial, points 18
6.5
Strength to Weight: Bending, points 18
8.6
Thermal Diffusivity, mm2/s 6.6
17
Thermal Shock Resistance, points 13
8.1

Alloy Composition

Aluminum (Al), % 0
0 to 0.010
Antimony (Sb), % 0
0 to 0.5
Carbon (C), % 0 to 0.1
0
Chromium (Cr), % 15 to 18
0
Copper (Cu), % 0 to 0.75
72 to 79.5
Iron (Fe), % 76.2 to 84.5
0 to 0.25
Lead (Pb), % 0
13 to 17
Manganese (Mn), % 0 to 1.0
0 to 0.2
Molybdenum (Mo), % 0 to 0.75
0
Nickel (Ni), % 0 to 0.6
0.5 to 2.0
Niobium (Nb), % 0.5 to 1.5
0
Phosphorus (P), % 0 to 0.040
0 to 0.1
Silicon (Si), % 0 to 1.0
0 to 0.010
Sulfur (S), % 0 to 0.030
0 to 0.1
Tin (Sn), % 0
6.0 to 8.0
Zinc (Zn), % 0
0 to 2.0