MakeItFrom.com
Menu (ESC)

AWS E70C-B2L vs. 3105 Aluminum

AWS E70C-B2L belongs to the iron alloys classification, while 3105 aluminum belongs to the aluminum alloys. There are 27 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is AWS E70C-B2L and the bottom bar is 3105 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
69
Elongation at Break, % 21
1.1 to 20
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 73
26
Tensile Strength: Ultimate (UTS), MPa 580
120 to 240
Tensile Strength: Yield (Proof), MPa 460
46 to 220

Thermal Properties

Latent Heat of Fusion, J/g 260
400
Melting Completion (Liquidus), °C 1460
660
Melting Onset (Solidus), °C 1420
640
Specific Heat Capacity, J/kg-K 470
900
Thermal Conductivity, W/m-K 39
170
Thermal Expansion, µm/m-K 13
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.5
44
Electrical Conductivity: Equal Weight (Specific), % IACS 8.6
140

Otherwise Unclassified Properties

Base Metal Price, % relative 3.0
9.5
Density, g/cm3 7.8
2.8
Embodied Carbon, kg CO2/kg material 1.6
8.2
Embodied Energy, MJ/kg 22
150
Embodied Water, L/kg 54
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
2.6 to 19
Resilience: Unit (Modulus of Resilience), kJ/m3 550
15 to 340
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
50
Strength to Weight: Axial, points 20
12 to 24
Strength to Weight: Bending, points 20
20 to 31
Thermal Diffusivity, mm2/s 11
68
Thermal Shock Resistance, points 17
5.2 to 11

Alloy Composition

Aluminum (Al), % 0
96 to 99.5
Carbon (C), % 0 to 0.050
0
Chromium (Cr), % 1.0 to 1.5
0 to 0.2
Copper (Cu), % 0 to 0.35
0 to 0.3
Iron (Fe), % 95.1 to 98
0 to 0.7
Magnesium (Mg), % 0
0.2 to 0.8
Manganese (Mn), % 0.4 to 1.0
0.3 to 0.8
Molybdenum (Mo), % 0.4 to 0.65
0
Nickel (Ni), % 0 to 0.2
0
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0.25 to 0.6
0 to 0.6
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0 to 0.1
Vanadium (V), % 0 to 0.030
0
Zinc (Zn), % 0
0 to 0.4
Residuals, % 0
0 to 0.15