MakeItFrom.com
Menu (ESC)

AWS E70C-B2L vs. EN 1.0031 Steel

Both AWS E70C-B2L and EN 1.0031 steel are iron alloys. They have a very high 97% of their average alloy composition in common. There are 27 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is AWS E70C-B2L and the bottom bar is EN 1.0031 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 21
28
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 73
73
Tensile Strength: Ultimate (UTS), MPa 580
310
Tensile Strength: Yield (Proof), MPa 460
210

Thermal Properties

Latent Heat of Fusion, J/g 260
250
Melting Completion (Liquidus), °C 1460
1470
Melting Onset (Solidus), °C 1420
1420
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 39
53
Thermal Expansion, µm/m-K 13
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.5
7.0
Electrical Conductivity: Equal Weight (Specific), % IACS 8.6
8.0

Otherwise Unclassified Properties

Base Metal Price, % relative 3.0
1.8
Density, g/cm3 7.8
7.9
Embodied Carbon, kg CO2/kg material 1.6
1.4
Embodied Energy, MJ/kg 22
18
Embodied Water, L/kg 54
45

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
78
Resilience: Unit (Modulus of Resilience), kJ/m3 550
120
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 20
11
Strength to Weight: Bending, points 20
13
Thermal Diffusivity, mm2/s 11
14
Thermal Shock Resistance, points 17
9.8

Alloy Composition

Carbon (C), % 0 to 0.050
0 to 0.1
Chromium (Cr), % 1.0 to 1.5
0
Copper (Cu), % 0 to 0.35
0
Iron (Fe), % 95.1 to 98
98.8 to 100
Manganese (Mn), % 0.4 to 1.0
0 to 0.7
Molybdenum (Mo), % 0.4 to 0.65
0
Nickel (Ni), % 0 to 0.2
0
Phosphorus (P), % 0 to 0.025
0 to 0.045
Silicon (Si), % 0.25 to 0.6
0 to 0.35
Sulfur (S), % 0 to 0.030
0 to 0.045
Vanadium (V), % 0 to 0.030
0
Residuals, % 0 to 0.5
0