MakeItFrom.com
Menu (ESC)

AWS E70C-B2L vs. CC381H Copper-nickel

AWS E70C-B2L belongs to the iron alloys classification, while CC381H copper-nickel belongs to the copper alloys. There are 27 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is AWS E70C-B2L and the bottom bar is CC381H copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
140
Elongation at Break, % 21
20
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 73
52
Tensile Strength: Ultimate (UTS), MPa 580
380
Tensile Strength: Yield (Proof), MPa 460
140

Thermal Properties

Latent Heat of Fusion, J/g 260
240
Melting Completion (Liquidus), °C 1460
1180
Melting Onset (Solidus), °C 1420
1120
Specific Heat Capacity, J/kg-K 470
410
Thermal Conductivity, W/m-K 39
30
Thermal Expansion, µm/m-K 13
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.5
6.8
Electrical Conductivity: Equal Weight (Specific), % IACS 8.6
6.9

Otherwise Unclassified Properties

Base Metal Price, % relative 3.0
40
Density, g/cm3 7.8
8.9
Embodied Carbon, kg CO2/kg material 1.6
5.0
Embodied Energy, MJ/kg 22
73
Embodied Water, L/kg 54
280

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
60
Resilience: Unit (Modulus of Resilience), kJ/m3 550
68
Stiffness to Weight: Axial, points 13
8.6
Stiffness to Weight: Bending, points 24
19
Strength to Weight: Axial, points 20
12
Strength to Weight: Bending, points 20
13
Thermal Diffusivity, mm2/s 11
8.4
Thermal Shock Resistance, points 17
13

Alloy Composition

Aluminum (Al), % 0
0 to 0.010
Carbon (C), % 0 to 0.050
0 to 0.030
Chromium (Cr), % 1.0 to 1.5
0
Copper (Cu), % 0 to 0.35
64.5 to 69.9
Iron (Fe), % 95.1 to 98
0.5 to 1.5
Lead (Pb), % 0
0 to 0.030
Manganese (Mn), % 0.4 to 1.0
0.6 to 1.2
Molybdenum (Mo), % 0.4 to 0.65
0
Nickel (Ni), % 0 to 0.2
29 to 31
Phosphorus (P), % 0 to 0.025
0 to 0.010
Silicon (Si), % 0.25 to 0.6
0 to 0.1
Sulfur (S), % 0 to 0.030
0 to 0.010
Vanadium (V), % 0 to 0.030
0
Zinc (Zn), % 0
0 to 0.5
Residuals, % 0 to 0.5
0