MakeItFrom.com
Menu (ESC)

AWS E70C-B2L vs. CC753S Brass

AWS E70C-B2L belongs to the iron alloys classification, while CC753S brass belongs to the copper alloys. There are 27 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is AWS E70C-B2L and the bottom bar is CC753S brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
100
Elongation at Break, % 21
17
Poisson's Ratio 0.29
0.31
Shear Modulus, GPa 73
40
Tensile Strength: Ultimate (UTS), MPa 580
340
Tensile Strength: Yield (Proof), MPa 460
170

Thermal Properties

Latent Heat of Fusion, J/g 260
170
Melting Completion (Liquidus), °C 1460
820
Melting Onset (Solidus), °C 1420
780
Specific Heat Capacity, J/kg-K 470
390
Thermal Conductivity, W/m-K 39
99
Thermal Expansion, µm/m-K 13
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.5
26
Electrical Conductivity: Equal Weight (Specific), % IACS 8.6
29

Otherwise Unclassified Properties

Base Metal Price, % relative 3.0
23
Density, g/cm3 7.8
8.1
Embodied Carbon, kg CO2/kg material 1.6
2.8
Embodied Energy, MJ/kg 22
47
Embodied Water, L/kg 54
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
47
Resilience: Unit (Modulus of Resilience), kJ/m3 550
140
Stiffness to Weight: Axial, points 13
7.1
Stiffness to Weight: Bending, points 24
19
Strength to Weight: Axial, points 20
12
Strength to Weight: Bending, points 20
13
Thermal Diffusivity, mm2/s 11
32
Thermal Shock Resistance, points 17
11

Alloy Composition

Aluminum (Al), % 0
0.4 to 0.8
Antimony (Sb), % 0
0 to 0.050
Carbon (C), % 0 to 0.050
0
Chromium (Cr), % 1.0 to 1.5
0
Copper (Cu), % 0 to 0.35
56.8 to 60.5
Iron (Fe), % 95.1 to 98
0.5 to 0.8
Lead (Pb), % 0
1.8 to 2.5
Manganese (Mn), % 0.4 to 1.0
0 to 0.2
Molybdenum (Mo), % 0.4 to 0.65
0
Nickel (Ni), % 0 to 0.2
0.5 to 1.2
Phosphorus (P), % 0 to 0.025
0 to 0.020
Silicon (Si), % 0.25 to 0.6
0 to 0.050
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0 to 0.8
Vanadium (V), % 0 to 0.030
0
Zinc (Zn), % 0
33.1 to 40
Residuals, % 0 to 0.5
0