MakeItFrom.com
Menu (ESC)

AWS E70C-B2L vs. C61900 Bronze

AWS E70C-B2L belongs to the iron alloys classification, while C61900 bronze belongs to the copper alloys. There are 27 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is AWS E70C-B2L and the bottom bar is C61900 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 21
21 to 32
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 73
43
Tensile Strength: Ultimate (UTS), MPa 580
570 to 650
Tensile Strength: Yield (Proof), MPa 460
230 to 310

Thermal Properties

Latent Heat of Fusion, J/g 260
230
Melting Completion (Liquidus), °C 1460
1050
Melting Onset (Solidus), °C 1420
1040
Specific Heat Capacity, J/kg-K 470
440
Thermal Conductivity, W/m-K 39
79
Thermal Expansion, µm/m-K 13
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.5
11
Electrical Conductivity: Equal Weight (Specific), % IACS 8.6
11

Otherwise Unclassified Properties

Base Metal Price, % relative 3.0
28
Density, g/cm3 7.8
8.3
Embodied Carbon, kg CO2/kg material 1.6
3.1
Embodied Energy, MJ/kg 22
51
Embodied Water, L/kg 54
380

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
110 to 150
Resilience: Unit (Modulus of Resilience), kJ/m3 550
230 to 430
Stiffness to Weight: Axial, points 13
7.6
Stiffness to Weight: Bending, points 24
19
Strength to Weight: Axial, points 20
19 to 22
Strength to Weight: Bending, points 20
18 to 20
Thermal Diffusivity, mm2/s 11
22
Thermal Shock Resistance, points 17
20 to 23

Alloy Composition

Aluminum (Al), % 0
8.5 to 10
Carbon (C), % 0 to 0.050
0
Chromium (Cr), % 1.0 to 1.5
0
Copper (Cu), % 0 to 0.35
83.6 to 88.5
Iron (Fe), % 95.1 to 98
3.0 to 4.5
Lead (Pb), % 0
0 to 0.020
Manganese (Mn), % 0.4 to 1.0
0
Molybdenum (Mo), % 0.4 to 0.65
0
Nickel (Ni), % 0 to 0.2
0
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0.25 to 0.6
0
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0 to 0.6
Vanadium (V), % 0 to 0.030
0
Zinc (Zn), % 0
0 to 0.8
Residuals, % 0
0 to 0.5