MakeItFrom.com
Menu (ESC)

AWS E80C-B2 vs. C11300 Copper

AWS E80C-B2 belongs to the iron alloys classification, while C11300 copper belongs to the copper alloys. There are 27 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is AWS E80C-B2 and the bottom bar is C11300 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
120
Elongation at Break, % 22
2.3 to 50
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 73
43
Tensile Strength: Ultimate (UTS), MPa 630
230 to 410
Tensile Strength: Yield (Proof), MPa 530
77 to 400

Thermal Properties

Latent Heat of Fusion, J/g 260
210
Melting Completion (Liquidus), °C 1460
1080
Melting Onset (Solidus), °C 1420
1030
Specific Heat Capacity, J/kg-K 470
390
Thermal Conductivity, W/m-K 39
390
Thermal Expansion, µm/m-K 13
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.5
100
Electrical Conductivity: Equal Weight (Specific), % IACS 8.6
100

Otherwise Unclassified Properties

Base Metal Price, % relative 3.0
32
Density, g/cm3 7.8
9.0
Embodied Carbon, kg CO2/kg material 1.6
2.6
Embodied Energy, MJ/kg 22
42
Embodied Water, L/kg 53
340

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
8.5 to 91
Resilience: Unit (Modulus of Resilience), kJ/m3 740
25 to 690
Stiffness to Weight: Axial, points 13
7.2
Stiffness to Weight: Bending, points 24
18
Strength to Weight: Axial, points 22
7.2 to 13
Strength to Weight: Bending, points 21
9.4 to 14
Thermal Diffusivity, mm2/s 11
110
Thermal Shock Resistance, points 18
8.2 to 15

Alloy Composition

Carbon (C), % 0.050 to 0.12
0
Chromium (Cr), % 1.0 to 1.5
0
Copper (Cu), % 0
99.85 to 99.973
Iron (Fe), % 95.3 to 97.9
0
Manganese (Mn), % 0.4 to 1.0
0
Molybdenum (Mo), % 0.4 to 0.65
0
Nickel (Ni), % 0 to 0.2
0
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0.25 to 0.6
0
Silver (Ag), % 0
0.027 to 0.050
Sulfur (S), % 0 to 0.030
0
Vanadium (V), % 0 to 0.030
0
Residuals, % 0
0 to 0.1