MakeItFrom.com
Menu (ESC)

AWS E80C-B3L vs. EN 1.4912 Stainless Steel

Both AWS E80C-B3L and EN 1.4912 stainless steel are iron alloys. They have 73% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is AWS E80C-B3L and the bottom bar is EN 1.4912 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 19
40
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 73
77
Tensile Strength: Ultimate (UTS), MPa 620
610
Tensile Strength: Yield (Proof), MPa 540
230

Thermal Properties

Latent Heat of Fusion, J/g 260
290
Melting Completion (Liquidus), °C 1460
1430
Melting Onset (Solidus), °C 1420
1390
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 41
16
Thermal Expansion, µm/m-K 13
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.7
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 8.8
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 4.0
20
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 1.8
3.8
Embodied Energy, MJ/kg 24
55
Embodied Water, L/kg 60
140

Common Calculations

PREN (Pitting Resistance) 5.7
18
Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
190
Resilience: Unit (Modulus of Resilience), kJ/m3 760
130
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 22
22
Strength to Weight: Bending, points 21
20
Thermal Diffusivity, mm2/s 11
4.2
Thermal Shock Resistance, points 18
14

Alloy Composition

Carbon (C), % 0 to 0.050
0.040 to 0.1
Chromium (Cr), % 2.0 to 2.5
17 to 19
Copper (Cu), % 0 to 0.35
0
Iron (Fe), % 93.5 to 96.5
64.6 to 73.6
Manganese (Mn), % 0.4 to 1.0
0 to 2.0
Molybdenum (Mo), % 0.9 to 1.2
0
Nickel (Ni), % 0 to 0.2
9.0 to 12
Niobium (Nb), % 0
0.4 to 1.2
Phosphorus (P), % 0 to 0.025
0 to 0.045
Silicon (Si), % 0.25 to 0.6
0 to 1.0
Sulfur (S), % 0 to 0.030
0 to 0.015
Vanadium (V), % 0 to 0.030
0
Residuals, % 0 to 0.5
0