MakeItFrom.com
Menu (ESC)

AWS E80C-B3L vs. C99600 Bronze

AWS E80C-B3L belongs to the iron alloys classification, while C99600 bronze belongs to the copper alloys. There are 23 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is AWS E80C-B3L and the bottom bar is C99600 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
150
Elongation at Break, % 19
27 to 34
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 73
56
Tensile Strength: Ultimate (UTS), MPa 620
560
Tensile Strength: Yield (Proof), MPa 540
250 to 300

Thermal Properties

Latent Heat of Fusion, J/g 260
240
Melting Completion (Liquidus), °C 1460
1100
Melting Onset (Solidus), °C 1420
1050
Specific Heat Capacity, J/kg-K 470
440
Thermal Expansion, µm/m-K 13
19

Otherwise Unclassified Properties

Base Metal Price, % relative 4.0
22
Density, g/cm3 7.8
8.1
Embodied Carbon, kg CO2/kg material 1.8
3.2
Embodied Energy, MJ/kg 24
51
Embodied Water, L/kg 60
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
130 to 150
Resilience: Unit (Modulus of Resilience), kJ/m3 760
210 to 310
Stiffness to Weight: Axial, points 13
10
Stiffness to Weight: Bending, points 24
22
Strength to Weight: Axial, points 22
19
Strength to Weight: Bending, points 21
19
Thermal Shock Resistance, points 18
14

Alloy Composition

Aluminum (Al), % 0
1.0 to 2.8
Carbon (C), % 0 to 0.050
0 to 0.050
Chromium (Cr), % 2.0 to 2.5
0
Cobalt (Co), % 0
0 to 0.2
Copper (Cu), % 0 to 0.35
50.8 to 60
Iron (Fe), % 93.5 to 96.5
0 to 0.2
Lead (Pb), % 0
0 to 0.020
Manganese (Mn), % 0.4 to 1.0
39 to 45
Molybdenum (Mo), % 0.9 to 1.2
0
Nickel (Ni), % 0 to 0.2
0 to 0.2
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0.25 to 0.6
0 to 0.1
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0 to 0.1
Vanadium (V), % 0 to 0.030
0
Zinc (Zn), % 0
0 to 0.2
Residuals, % 0
0 to 0.3