MakeItFrom.com
Menu (ESC)

AWS E80C-B6 vs. N06255 Nickel

AWS E80C-B6 belongs to the iron alloys classification, while N06255 nickel belongs to the nickel alloys. They have a modest 22% of their average alloy composition in common, which, by itself, doesn't mean much. There are 23 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is AWS E80C-B6 and the bottom bar is N06255 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
210
Elongation at Break, % 19
45
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 74
81
Tensile Strength: Ultimate (UTS), MPa 630
660
Tensile Strength: Yield (Proof), MPa 530
250

Thermal Properties

Latent Heat of Fusion, J/g 260
320
Melting Completion (Liquidus), °C 1450
1470
Melting Onset (Solidus), °C 1410
1420
Specific Heat Capacity, J/kg-K 470
450
Thermal Expansion, µm/m-K 13
13

Otherwise Unclassified Properties

Base Metal Price, % relative 4.7
55
Density, g/cm3 7.8
8.5
Embodied Carbon, kg CO2/kg material 1.8
9.4
Embodied Energy, MJ/kg 25
130
Embodied Water, L/kg 71
270

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
230
Resilience: Unit (Modulus of Resilience), kJ/m3 730
150
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
23
Strength to Weight: Axial, points 22
22
Strength to Weight: Bending, points 21
20
Thermal Shock Resistance, points 18
17

Alloy Composition

Carbon (C), % 0 to 0.1
0 to 0.030
Chromium (Cr), % 4.5 to 6.0
23 to 26
Copper (Cu), % 0 to 0.35
0 to 1.2
Iron (Fe), % 90.1 to 94.4
6.0 to 24
Manganese (Mn), % 0.4 to 1.0
0 to 1.0
Molybdenum (Mo), % 0.45 to 0.65
6.0 to 9.0
Nickel (Ni), % 0 to 0.6
47 to 52
Phosphorus (P), % 0 to 0.025
0 to 0.030
Silicon (Si), % 0.25 to 0.6
0 to 1.0
Sulfur (S), % 0 to 0.025
0 to 0.030
Titanium (Ti), % 0
0 to 0.69
Tungsten (W), % 0
0 to 3.0
Vanadium (V), % 0 to 0.030
0
Residuals, % 0 to 0.5
0